The substitution of fossil derived monomers in thermosetting resins is a very important point to look at to face environmental impact issues related with the use of traditional resins. The research group set up a protocol for the preparation of thermosetting resins starting from vegetable oils with different composition to substitute the petroleum-based monomers. The materials obtained in this way have a bio-based carbon content higher than 80%.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 61 - 71 of 71
The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.
Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.
This form describes a programmable, autonomous and stand-alone imaging system for the acquisition and processing of images containing subjects whose size is larger than 1cm (e.g. gelatinous zooplankton, fishes, litter, manufacts), form the seafloor or along the water column, in shallow or deep waters. It is capable to recognize and classify the image content through pattern recognition algorithms that combine computer vision and artificial intelligence methodologies.
We present a technology for the multiscale isolation (analytical-laboratory-production) of Extracellular Vesicles (VE), which overcomes the limitations of the currently available methods. As opposed to traditional "affinity-based" systems that exploit antibodies, our technology represents a radical paradigm shift in the development of affinity probes for vesicles, i.e.
The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.
WSense provides customizable and modular real-time, bi-directional, in-situ monitoring tools capable of sending real-time alarms. It makes possible to monitor the entire water column, on areas that can scale from a few tens of square meters to hundreds or thousands of square meters depending on the number of nodes deployed as needed. The monitoring system is implemented using submarine wireless communication nodes (W-Nodes) integrated with probes to monitor various parameters.
X-ray imaging techniques can work in i) "full-field mode" in which the object to study (or part of it) is completely illuminated by the X-ray beam; ii) "scanning mode" in which an X-ray beam, focused through an opportune optics, illuminates in succession contiguous areas of the sample under examination, and the transmitted wave is measured by a detector placed at a proper distance from it. One of these X-ray scanning microscopes is available at the facility (X-ray MicroImaging, XMIL@b) of the Institute of Crystallography (CNR-Bari).