The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 31 - 45 of 56
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
Combinations of several enzymes in a production chain are preferred to “first generation” enzymatic processes (where the "single reaction - single enzyme" principle was followed), for the synthesis of compounds with high added value starting from simple and cheap substrates. An important requirement for obtaining control in "cascade enzymatic reactions" is the ability to deliver from one biocatalyst to the next one the various intermediates, limiting as much as possible the diffusion of the latter in the solvent.
The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.
This technology describe the synthesis of cross-linked polymeric materials in the form of macroporous gels based on poly (2-hydroxyethyl methacrylate), capable of sequestering the anticoagulant heparin from aqueous solutions, physiological solutions and biological fluids. They are morphologically elastic and mechanically stable materials, and show high specificity and selectivity for heparin as demonstrated by the negligible adsorption of specific blood proteins such as antithrombin III, albumin and total proteins.
We developed an hybrid organic-inorganic composite consisting of a 2D perovskite and a copolymer. At room temperature the composite is highly transparent in the visible region with transmittance > 90%. At higher temperatures, the movement of the polymer chains releases the precursors, allowing the perovskite formation, which results in a colored film. The color changes according to the ‘n’ value of the PVK. PVK with n=1 starts coloring at 70°C, achieving a ∆Tmax = 91.5% at 510 nm.
The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.
The Q-PLL is a nonlinear circuit which can maintain a locked state when forced by two incommensurate frequencies.
The locked state is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi- periodic input and is closely related to the pitch perception of complex sound in humans.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
The present technology deals with jewels based on shape memory alloys and fabricated through additive manufacturing. In ICMATE-Lecco laboratories, several NiTi-based rings have been fabricated through a powder bed fusion technology (selective laser melting technique).
The invention consists in a special regulation method of the horizontal axes of operating and rubbing wheels of a centerless grinding machine coupled with an opportune blade profile, allowing a continuous regulation of blade rest angle (angle between tangent to blade profile at the contact point with the work piece and the horizon, denoted by γ) and workpiece height (denoted by hw), without requiring blade substitution and/or manual regulations.
The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.
Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.
The proposed technology is about the development of an innovative sunscreen obtained from cod fish bones, according to the principles of the circular economy. The sunscreen is a reddish powder, which is constituted of hydroxyapatite (a calcium phosphate main component of human bones) modified with iron. It is prepared with a simple and easily scalable process (treatment of the bones in Fe solution and successively at T = 700 oC) and could be adapted for bones of other fishes.
Electrochromism is an optoelectronic characteristic of particular interest because it can be exploited in the creation of technologies such as smart windows (Smart Windows) to promote energy efficiency, automotive, sensor or visualization devices. Electrochromic materials change their optoelectronic characteristics, showing different colors depending on the applied electric field.