B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 7 of 7
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
The proposed technology offers a novel and versatile method for detecting cracks in insulating materials of electrically polarized metal devices, i.e. dielectric coatings on metals, especially in low-pressure gas environments. It uses an ionized plasma that interacts uniformly with the insulating surface, allowing to detect defects invisible to the naked eye. The detection occurs in a single test without changing the environmental conditions and without risking harmful electrical discharges.
The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.