The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 16 - 30 of 57
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
The proposed technology takes advantages of the huge potentialities of the gellan gum microgels in the preservation of cultural heritage. Microgels are polymeric gels particles with the micro and nanoscale size, whose soft nature is due to the presence of the aqueous solvent inside the particle. For their small size, they can easily diffuse in the environment and penetrate in the porous structure of paper and wood to act as cleaner agent.
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
INCIPIT technology allowed the implementation of a multifunctional, micro-structured and electroconductive therapeutic product to treat patients with myocardial infarction, the leading cause of death for cardiovascular disease. Current therapies (drugs, bypass, angioplasty) do not restore the functionality of damaged myocardial tissue.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.
Large-scale synthesis of inorganic colloidal TiO2@WO3-x nanoheterostructures based on multicomponent semiconductor (TiO2)-plasmonic (WO3-x) heterojunctions.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.
Flow technologies for the synthesis of chemical intermediates have great potential at the industrial level and the synthesis of nanoparticles (NPs) can speed up the development of new products. In this context, we could find the technology for the synthesis of NPs. The NPs (Au, Ag, or Pt) are synthesized in a single step and are functionalized with polymeric stabilizers (such as PVP, PVA, PEG, or others) or with thio-glycosidic fragments.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.