We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 16 - 30 of 64
The proposed technology takes advantages of the huge potentialities of the gellan gum microgels in the preservation of cultural heritage. Microgels are polymeric gels particles with the micro and nanoscale size, whose soft nature is due to the presence of the aqueous solvent inside the particle. For their small size, they can easily diffuse in the environment and penetrate in the porous structure of paper and wood to act as cleaner agent.
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
INCIPIT technology allowed the implementation of a multifunctional, micro-structured and electroconductive therapeutic product to treat patients with myocardial infarction, the leading cause of death for cardiovascular disease. Current therapies (drugs, bypass, angioplasty) do not restore the functionality of damaged myocardial tissue.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.
Large-scale synthesis of inorganic colloidal TiO2@WO3-x nanoheterostructures based on multicomponent semiconductor (TiO2)-plasmonic (WO3-x) heterojunctions.
We propose a compact innovative spectroscopy system operating in the UV range. In the actual version, designed for gas, it exhibits: an aluminium tubular optical chamber (length can be adjusted; currently is 20 cm); a cheap commercial UV LED; a SiC visible blind UV detector designed and manufactured at the CNR-IMM facilities. The team developed also the electronic chain for wireless remote real time read out; while able to deal with pA current levels, it uses very cheap components and construction technology.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.
The invention is about the development of a device and its methodology for measuring the active and reactive sound intensity from the impedance computation. The active intensity is calculated directly in the frequency domain multiplying the complex impedance and power spectrum of the air particle velocity. A second line of post-processing is applied to obtain the overall complex sound intensity.