Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 16 - 19 of 19

# Record card
175
Description

The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.

Thematic areas
Materials
Materials / Processes of production & treatment of materials
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
ICT & Electronics
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Colours & dyes
Materials / Composite and hybrid materials
Materials / Optical materials
# Record card
170
Description

The present technology deals with jewels based on shape memory alloys and fabricated through additive manufacturing. In ICMATE-Lecco laboratories, several NiTi-based rings have been fabricated through a powder bed fusion technology (selective laser melting technique).

Thematic areas
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Materials
Materials / Metals & alloys
# Record card
8
Description

Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.

Thematic areas
ICT & Electronics / Laser technologies
Bioeconomy
Materials / Photo-active & graphene-based materials
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Health & Biotech / Biosensors
# Record card
79
Description

Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.

Thematic areas
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Agrifood / Agriculture
Health & Biotech / Nanomedicine
Health & Biotech / Medical Device
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Organic substances
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers