Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 3 of 3

# Record card
258
Description

The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Health & Biotech / Medical Device
Energy and environmental sustainability
Energy and environmental sustainability / Environmental engineering/technologies
Chemicals & Physics / Inorganic substances
Energy and environmental sustainability / Sensory
Chemicals & Physics / Organic substances
Chemicals & Physics / Colours & dyes
Materials
# Record card
59
Description

The prototype uses soil moisture sensors which, through a measurement of dielectric permittivity, estimate the soil moisture based on which irrigation is started through relay-controlled solenoid valve. The system was developed using Open Source technologies. Specifically, for the hardware components, a small sized board computer Raspberry PI 3B + was used together with a 4G LTE Wi-Fi router and a Modbus rs485 / USB converter.

Thematic areas
Agrifood / Agriculture
Energy and environmental sustainability / Environmental engineering/technologies
ICT & Electronics / Internet of Things
# Record card
245
Description

Spark anemometry based on the analysis of an electrical discharge can be implemented in the automotive sector through measurements of the secondary circuit voltage. Actual applicability of this method is quite limited, given that it requires additional hardware that is not compatible with space requirements specific for production engines (e.g. fueled with gasoline, LPG or methane); furthermore, applying high voltage measurements is complex and entails increased cost.

Thematic areas
Automotive transport and logistics
Automotive transport and logistics / Innovative fuels
Automotive transport and logistics / Propulsion
Energy and environmental sustainability
Energy and environmental sustainability / Sensory
ICT & Electronics
ICT & Electronics / Electronics and microelectronics