Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 4 of 4

# Record card
246
Description

Large-scale synthesis of inorganic colloidal TiO2@WO3-x nanoheterostructures based on multicomponent semiconductor (TiO2)-plasmonic (WO3-x) heterojunctions.

Thematic areas
Materials
Materials / Photo-active & graphene-based materials
Chemicals & Physics
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
102
Description

The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.

Thematic areas
Energy and environmental sustainability / Environmental engineering/technologies
Materials / Photo-active & graphene-based materials
Agrifood / Marine resources
Materials / Composite and hybrid materials
Chemicals & Physics / Separation technologies
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
74
Description

The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.

Thematic areas
Materials / Properties of materials, corrosion, degradation
Additive and advanced industrial manufacturing / Packaging
Energy and environmental sustainability / Renewable sources
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Waste management
Bioeconomy
# Record card
134
Description

The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.

Thematic areas
Aerospace and Earth Science
Energy and environmental sustainability
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials