Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 5 of 5

# Record card
244
Description

The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.

Thematic areas
ICT & Electronics
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Robotics and control systems
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Materials
Materials / Composite and hybrid materials
Materials / Optical materials
Materials / Plastics, polymers
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Energy and environmental sustainability
Health & Biotech
# Record card
176
Description

The proposed technology consists of a portable device for monitoring the freshness of fish, based on its smell. The device is based on a gas sensor and pattern recognition software to correlate the sensor signal to the freshness of the food. The technology is designed for its integration into domestic or industrial refrigerators.

Thematic areas
Measurement tools and Standards
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Agrifood
Agrifood / Food quality & safety
# Record card
158
Description

Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and  its design and optimization to be oriented.

Thematic areas
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Materials
Materials / Wood products
Health & Biotech
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Development of new drugs
Health & Biotech / Regenerative Medicine
Health & Biotech / Care, Hygiene, Cosmetics
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science
Aerospace and Earth Science / Aeronautical technologies and avionics
Tourism, social sciences and cultural heritage / Multimedia technologies
Tourism, social sciences and cultural heritage / Archaeology
Agrifood
Agrifood / Agriculture
Agrifood / Food quality & safety
Automotive transport and logistics
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Innovative fuels
Chemicals & Physics
Energy and environmental sustainability
# Record card
237
Description

The proposed technology is based on the concept of Power-Over-Fibre (PoF), which involves the transmission of data and power over an optical fiber. This technology is suitable for applications where traditional copper cabling is impractical or undesirable. This is the case with pantographs, where there is a large potential difference between the catenary and the earth, and therefore any electrical contact must be avoided for safety reasons. Furthermore, pantographs operate in an environment with very high electromagnetic interference (EMI).

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
# Record card
94
Description

The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.

Thematic areas
Chemicals & Physics / Imaging & image processing
ICT & Electronics / Laser technologies
ICT & Electronics / Optics & Acoustic
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Sensory
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Chemicals & Physics / Quantum optics
Materials / Optical materials
Chemicals & Physics / Atomic and molecular spectroscopy
ICT & Electronics / Telecommunications