Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 3 of 3

# Record card
92
Description

Molecular doping (MD) is a doping method based on the use of liquid solutions. The dopant precursor is in liquid form and the material to be doped is immersed in the solution. During the immersion process, the molecule containing the dopant atom is deposited on the surface of the material forming a self-assembled monolayer, that is, ordered and compact. Through a subsequent heat treatment, the molecule decomposes and the dopant diffuses.

Thematic areas
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
# Record card
258
Description

The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Health & Biotech / Medical Device
Energy and environmental sustainability
Energy and environmental sustainability / Environmental engineering/technologies
Chemicals & Physics / Inorganic substances
Energy and environmental sustainability / Sensory
Chemicals & Physics / Organic substances
Chemicals & Physics / Colours & dyes
Materials
# Record card
38
Description

The Q-PLL is a nonlinear circuit which can maintain a locked state when forced by two incommensurate frequencies.

The locked state is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.

In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi- periodic input and is closely related to the pitch perception of complex sound in humans.

Thematic areas
Materials / Properties of materials, corrosion, degradation
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Robotics and control systems
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Multimedia
ICT & Electronics / Telecommunications