Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 7 of 7

# Record card
244
Description

The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.

Thematic areas
ICT & Electronics
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Robotics and control systems
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Materials
Materials / Composite and hybrid materials
Materials / Optical materials
Materials / Plastics, polymers
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Energy and environmental sustainability
Health & Biotech
# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
52
Description

Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit,  by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.

Thematic areas
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical imaging & equipment
Health & Biotech / Smart Devices for Health and Wellness
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Optical materials
Materials / Processes of production & treatment of materials
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Sensory
# Record card
243
Description

This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.

Thematic areas
ICT & Electronics
ICT & Electronics / Laser technologies
Tourism, social sciences and cultural heritage / Archeometry
Tourism, social sciences and cultural heritage / Safety and security
ICT & Electronics / Optics & Acoustic
Agrifood
Energy and environmental sustainability
Health & Biotech
Agrifood / Food quality & safety
Additive and advanced industrial manufacturing
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing / Factory of the Future
Measurement tools and Standards
Tourism, social sciences and cultural heritage
ICT & Electronics / Microwaves and RF
# Record card
94
Description

The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.

Thematic areas
Chemicals & Physics / Imaging & image processing
ICT & Electronics / Laser technologies
ICT & Electronics / Optics & Acoustic
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Sensory
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Chemicals & Physics / Quantum optics
Materials / Optical materials
Chemicals & Physics / Atomic and molecular spectroscopy
ICT & Electronics / Telecommunications
# Record card
175
Description

The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.

Thematic areas
Materials
Materials / Processes of production & treatment of materials
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
ICT & Electronics
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Colours & dyes
Materials / Composite and hybrid materials
Materials / Optical materials
# Record card
40
Description

Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Artificial Intelligence