Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 15 of 23

# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
61
Description

The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.

Thematic areas
Tourism, social sciences and cultural heritage / Archeometry
Energy and environmental sustainability / Safety and security
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Materials / Processes of production & treatment of materials
Health & Biotech / Smart Devices for Health and Wellness
Agrifood / Food quality & safety
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Cleaner use of fossil fuels
Tourism, social sciences and cultural heritage / Safety and security
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Energy and environmental sustainability / Environmental engineering/technologies
Additive and advanced industrial manufacturing / Process control and logistic
Energy and environmental sustainability / Sensory
ICT & Electronics / Electronics and microelectronics
Chemicals & Physics / Separation technologies
# Record card
95
Description

The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).

Thematic areas
Agrifood / Food quality & safety
Aerospace and Earth Science
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Sensory
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Electronics and microelectronics
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Biosensors
Tourism, social sciences and cultural heritage / Safety and security
# Record card
92
Description

Molecular doping (MD) is a doping method based on the use of liquid solutions. The dopant precursor is in liquid form and the material to be doped is immersed in the solution. During the immersion process, the molecule containing the dopant atom is deposited on the surface of the material forming a self-assembled monolayer, that is, ordered and compact. Through a subsequent heat treatment, the molecule decomposes and the dopant diffuses.

Thematic areas
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
# Record card
251
Description

The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.

Thematic areas
ICT & Electronics
ICT & Electronics / Cybersecurity
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Future Internet
ICT & Electronics / Robotics and control systems
ICT & Electronics / Augmented Reality
Additive and advanced industrial manufacturing
Health & Biotech
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Tourism, social sciences and cultural heritage / Education & learning
Tourism, social sciences and cultural heritage / Entertainment
Tourism, social sciences and cultural heritage / Tourism
Aerospace and Earth Science
Tourism, social sciences and cultural heritage / Socio-economic models
Tourism, social sciences and cultural heritage / Multimedia technologies
Agrifood
Agrifood / Nutrition & health
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics
Energy and environmental sustainability
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Multimedia
# Record card
52
Description

Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit,  by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.

Thematic areas
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical imaging & equipment
Health & Biotech / Smart Devices for Health and Wellness
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Optical materials
Materials / Processes of production & treatment of materials
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Sensory
# Record card
55
Description

The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.

Thematic areas
ICT & Electronics / Cybersecurity
ICT & Electronics / Network technology, network security
ICT & Electronics / Future Internet
ICT & Electronics / Big Data
ICT & Electronics / Artificial Intelligence
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Microwaves and RF
ICT & Electronics / Telecommunications
Aerospace and Earth Science / Satellite technologies
# Record card
53
Description

VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.

Thematic areas
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Agrifood / Food quality & safety
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Organic substances
Chemicals & Physics / Man made fibres
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Atomic and molecular spectroscopy
Materials / Plastics, polymers
Chemicals & Physics / Imaging & image processing
Materials / Properties of materials, corrosion, degradation
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical imaging & equipment
Energy and environmental sustainability / Sensory
ICT & Electronics / Electronics and microelectronics
# Record card
68
Description

In the last years, genetics played a strategic role in the identification of therapeutic targets for complex diseases. Genetic studies identified thousands of variants contributing to disease onset and/or to the influence of measurable features (phenotypes) impacting health. The mechanism of action by which they modulate diseases and phenotypes is still unknown for the vast majority.

Thematic areas
Health & Biotech / Bio-informatics
ICT & Electronics / Big Data
# Record card
7
Description

Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.

Thematic areas
Materials / Processes of production & treatment of materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Renewable sources
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Energy production, transmission and conversion
Materials / Composite and hybrid materials
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
238
Description

Mergers e Acquisitions represent important forms of business deals because of the volumes involved in the transactions and the role of the innovation activity of companies. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones.

Thematic areas
ICT & Electronics
ICT & Electronics / Information processing, information system, workflow management
Tourism, social sciences and cultural heritage / Socio-economic models
# Record card
243
Description

This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.

Thematic areas
ICT & Electronics
ICT & Electronics / Laser technologies
Tourism, social sciences and cultural heritage / Archeometry
Tourism, social sciences and cultural heritage / Safety and security
ICT & Electronics / Optics & Acoustic
Agrifood
Energy and environmental sustainability
Health & Biotech
Agrifood / Food quality & safety
Additive and advanced industrial manufacturing
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing / Factory of the Future
Measurement tools and Standards
Tourism, social sciences and cultural heritage
ICT & Electronics / Microwaves and RF
# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
158
Description

Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and  its design and optimization to be oriented.

Thematic areas
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Materials
Materials / Wood products
Health & Biotech
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Development of new drugs
Health & Biotech / Regenerative Medicine
Health & Biotech / Care, Hygiene, Cosmetics
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science
Aerospace and Earth Science / Aeronautical technologies and avionics
Tourism, social sciences and cultural heritage / Multimedia technologies
Tourism, social sciences and cultural heritage / Archaeology
Agrifood
Agrifood / Agriculture
Agrifood / Food quality & safety
Automotive transport and logistics
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Innovative fuels
Chemicals & Physics
Energy and environmental sustainability
# Record card
184
Description

We developed an hybrid organic-inorganic composite consisting of a 2D perovskite and a copolymer. At room temperature the composite is highly transparent in the visible region with transmittance > 90%. At higher temperatures, the movement of the polymer chains releases the precursors, allowing the perovskite formation, which results in a colored film. The color changes according to the ‘n’ value of the PVK. PVK with n=1 starts coloring at 70°C, achieving a ∆Tmax = 91.5% at 510 nm.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Energy and environmental sustainability
Energy and environmental sustainability / Rational use of energy
Materials
Materials / Composite and hybrid materials