Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 46 - 51 of 51

# Record card
41
Description

The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical Device
Materials / Processes of production & treatment of materials
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
# Record card
82
Description

We present a new concept of ultra-compact, configurable and implantable brain computer interface (BCI). The device can be applied to monitor or stimulate, with high temporal and spatial accuracy, neural activity of the brain. It allows implementation of closed-loop algorithms in real time applications. The system can be also used in vitro to monitor or induce cell growth or as tDCS tool. The system can be customized (microelectrodes materials and shapes) to guarantee the best solution for the specific application.

Thematic areas
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Diagnostic kits
# Record card
79
Description

Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.

Thematic areas
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Agrifood / Agriculture
Health & Biotech / Nanomedicine
Health & Biotech / Medical Device
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Organic substances
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers
# Record card
81
Description

IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.

Thematic areas
ICT & Electronics / Smart cities and Communities
Health & Biotech / Smart Devices for Health and Wellness
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
Automotive transport and logistics / Vehicles
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Additive and advanced industrial manufacturing / Robotics
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers
# Record card
134
Description

The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.

Thematic areas
Aerospace and Earth Science
Energy and environmental sustainability
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials
# Record card
30
Description

X-ray imaging techniques can work in i) "full-field mode" in which the object to study (or part of it) is completely illuminated by the X-ray beam; ii) "scanning mode" in which an X-ray beam, focused through an opportune optics, illuminates in succession contiguous areas of the sample under examination, and the transmitted wave is measured by a detector placed at a proper distance from it. One of these X-ray scanning microscopes is available at the facility (X-ray MicroImaging, XMIL@b) of the Institute of Crystallography (CNR-Bari).

Thematic areas
Chemicals & Physics / Man made fibres
Additive and advanced industrial manufacturing / Packaging
Materials
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging