The full face mask adapts to the face of the user; it is used in the medical field where there may be close contact between a patient and a doctor and in all those areas of possible social overcrowding that, in case of a pandemic, may lead to the spread of a virus. To date, as the main means of containment and prevention of infection, are used masks made of fabric or equipped with filter that adhere to the face of the user in order to shield nose and mouth and / or filter the air inhaled and / or exhaled by the user.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 46 - 60 of 63
The Q-PLL is a nonlinear circuit which can maintain a locked state when forced by two incommensurate frequencies.
The locked state is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi- periodic input and is closely related to the pitch perception of complex sound in humans.
The present technology deals with jewels based on shape memory alloys and fabricated through additive manufacturing. In ICMATE-Lecco laboratories, several NiTi-based rings have been fabricated through a powder bed fusion technology (selective laser melting technique).
The invention consists in a special regulation method of the horizontal axes of operating and rubbing wheels of a centerless grinding machine coupled with an opportune blade profile, allowing a continuous regulation of blade rest angle (angle between tangent to blade profile at the contact point with the work piece and the horizon, denoted by γ) and workpiece height (denoted by hw), without requiring blade substitution and/or manual regulations.
The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.
This technology is based on an algorithm able to provide the probability of being asthmatic with high accuracy. This probability is based on the evaluation of respiratory function and, specifically, of forced expiratory vital capacity in the first second (FEV1), in resting conditions, and 20 minutes after administration of a bronchodilator drug.
Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.
The proposed technology is about the development of an innovative sunscreen obtained from cod fish bones, according to the principles of the circular economy. The sunscreen is a reddish powder, which is constituted of hydroxyapatite (a calcium phosphate main component of human bones) modified with iron. It is prepared with a simple and easily scalable process (treatment of the bones in Fe solution and successively at T = 700 oC) and could be adapted for bones of other fishes.
Electrochromism is an optoelectronic characteristic of particular interest because it can be exploited in the creation of technologies such as smart windows (Smart Windows) to promote energy efficiency, automotive, sensor or visualization devices. Electrochromic materials change their optoelectronic characteristics, showing different colors depending on the applied electric field.
The substitution of fossil derived monomers in thermosetting resins is a very important point to look at to face environmental impact issues related with the use of traditional resins. The research group set up a protocol for the preparation of thermosetting resins starting from vegetable oils with different composition to substitute the petroleum-based monomers. The materials obtained in this way have a bio-based carbon content higher than 80%.
The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.
We present a new concept of ultra-compact, configurable and implantable brain computer interface (BCI). The device can be applied to monitor or stimulate, with high temporal and spatial accuracy, neural activity of the brain. It allows implementation of closed-loop algorithms in real time applications. The system can be also used in vitro to monitor or induce cell growth or as tDCS tool. The system can be customized (microelectrodes materials and shapes) to guarantee the best solution for the specific application.
Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.
IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.
The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.