Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 6 of 6

# Record card
26
Description

The final technology will add polarimetric capability to imaging cameras in the NUV/optical, providing simultaneous measurements of the different polarization states of the light. This will be obtained by the development of an innovative coating based on nanostructured emissive materials sensitive to the polarization of the incident light. A  double layer film of two organic systems will be coupled to image detectors so that the two polarization components of the incoming light are converted into two different colors.

Thematic areas
Aerospace and Earth Science / Satellite technologies
Materials / Optical materials
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
# Record card
57
Description

Inert biomedical devices with modular load-bearing function designed with peculiar multi-domain composite microstructures. The reference compositional system is Zirconia-Alumina with a prevailing overall composition of customizable zirconia or alumina. Examples of devices are 3D structures consisting of parts with differentiated functional properties, due to different composition/microstructure/architecture, and further functionalizable ex-post to favor and improve the stabilization of the implantation by newly formed bone in superior quantity and quality.

Thematic areas
Health & Biotech / Bio-medicals
Materials / Ceramic materials
Materials / Composite and hybrid materials
# Record card
181
Description

The proposed technology takes advantages of the huge potentialities of the gellan gum microgels in the preservation of cultural heritage. Microgels are polymeric gels particles with the micro and nanoscale size, whose soft nature is due to the presence of the aqueous solvent inside the particle. For their small size, they can easily diffuse in the environment and penetrate in the porous structure of paper and wood to act as cleaner agent.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials
Materials / Plastics, polymers
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
# Record card
129
Description

Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.

Thematic areas
Aerospace and Earth Science
Aerospace and Earth Science / Seismology
Materials
Materials / Wood products
Energy and environmental sustainability / Building materials
Agrifood
Agrifood / Forestry
Health & Biotech
Health & Biotech / Smart Devices for Health and Wellness
Energy and environmental sustainability
Tourism, social sciences and cultural heritage / Safety and security
Energy and environmental sustainability / Natural disasters
Energy and environmental sustainability / Simulation
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Bioeconomy
# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
30
Description

X-ray imaging techniques can work in i) "full-field mode" in which the object to study (or part of it) is completely illuminated by the X-ray beam; ii) "scanning mode" in which an X-ray beam, focused through an opportune optics, illuminates in succession contiguous areas of the sample under examination, and the transmitted wave is measured by a detector placed at a proper distance from it. One of these X-ray scanning microscopes is available at the facility (X-ray MicroImaging, XMIL@b) of the Institute of Crystallography (CNR-Bari).

Thematic areas
Chemicals & Physics / Man made fibres
Additive and advanced industrial manufacturing / Packaging
Materials
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging