A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 20
Direct quantification of the percentage of arabica in roasted and ground coffee blends of arabica/robusta by High Resolution Nuclear Magnetic Resonance spectroscopy (NMR), in solution and multivariate statistical analysis. Particularly, the metabolites content present in water extracts of coffee is analyzed and compared with NMR data of our database.
The proposed technology consists of a portable device for monitoring the freshness of fish, based on its smell. The device is based on a gas sensor and pattern recognition software to correlate the sensor signal to the freshness of the food. The technology is designed for its integration into domestic or industrial refrigerators.
Method for extracting, with high yield, phycobiliproteins from cyanobacterial and/or algal biomass, obtaining aqueous extracts characterized by high concentration of pigments (4-5 mg/mL) and a purity, at least equal to food/cosmetic grade (P≥2).
The development of functional foods is often limited by industrial manufacturing processes, for example, for the production of baked foods, the use of high cooking temperatures causes denaturation of proteins, destruction of vitamins, alteration of fatty acids, etc. The protection of these components is essential in the production of gluten-free foods as they are generally poor in proteins and vitamins.
Plants have a huge potential to contribute to the solution of a large number of issues facing the modern world, ranging from a poor crop yields and problems caused by global climate changing. Our team has been on the forefront of the PCR and NGS applications to plant responses to biotic and abiotic stress. As experts in genomics and plant pathology we are able to accelerate the understanding and use of plant genes and resources.
Combined use of High-Resolution Nuclear Magnetic Resonance (NMR) spectroscopy in solution and multivariate statistical analysis for the geographical differentiation of Italian and Chinese concentrated tomato paste. Particularly the metabolites content of acqueos exctrats of concentrated tomato paste is evaluated.
Anthocyanins are antioxidant polyphenolic pigments produced by plants that are widely used in the food, cosmetic and pharmaceutical industries. The technology allows to obtain in a short time potato cell lines in which the production of highly acetylated and highly complex anthocyanins is increased in addition to other antioxidant polyphenolic compounds. The obtained cellular lines have a high production efficiency, comparable to the extraction of berries, but with the advantage of having an on-demand production which is not limited to seasonality.
We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
Our idea come from the improving of the traceability technique in agro-food fisheries industries through the application of omics technologies in microbiota studies. These latter would be capable of exploiting the huge pool of biological molecules contained in fishery resources (e.g. nucleic acids, proteins, metabolites) and use them as a powerful tools for the identification and reconstruction of fishery history, from the sea to the table.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
We have identified compounds that show a neuroprotective action in vivo, in models of neurodegenerative diseases (e.g. SMA, Parkinson, Alzheimer, Huntington) in the model organism C. elegans. These compounds consist of: mixtures of 22 natural extracts, 15 natural molecules and 11 synthetic molecules.
The systems simulate, with high reproducibility, the conditions that occur in the different compartments of the gastrointestinal tracts and are promising to accurately mimic the digestive process, with the possibility to evaluate bioaccessibility and bioavailability. Moreover, the systems permit to study the synergic and reciprocal effects between the bioactive compounds characteristic of food and intestinal microbiota.
Celiac disease and non-celiac gluten sensitivity affect a large portion of the world population. Furthermore, the percentage of people who adopt the gluten free diet is constantly increasing because it is perceived to be healthier. We have previously developed a food grade enzymatic procedure (transamidation) for wheat flour capable of making gluten unable to induce the inflammatory response in the intestine of celiac disease patients.