B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 6 of 6
A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
Quartz tuning forks are employed in scanning atomic force microscopy (AFM), as well as in some derived techniques, as high sensitivity detectors of interactions, of both conservative and dissipative kind, between the AFM nanometric probe and the investigated surface. However, the contributions of the two kinds of interaction result as convoluted in the sensor response, preventing fully quantitative measurements of the quantities of interest.
WSense provides customizable and modular real-time, bi-directional, in-situ monitoring tools capable of sending real-time alarms. It makes possible to monitor the entire water column, on areas that can scale from a few tens of square meters to hundreds or thousands of square meters depending on the number of nodes deployed as needed. The monitoring system is implemented using submarine wireless communication nodes (W-Nodes) integrated with probes to monitor various parameters.