The aim of the present invention is to develop a modular scintigraphic device, with high spatial resolution, capable of creating investigation areas of various shapes and sizes, of compact form and of being used in different types of applications.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 11 of 11
The present invention relates to a gamma camera for intracavitary use, which is widely used in the field of radio-guided surgery (intra-operative and laparoscopic and robotic-assisted) for the localisation of lymph nodes and tumours and/or other pathologies. The aim of the present invention is to make available an intraoperative tool able to overcome the drawbacks of the present known art.
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.
The proposed technology takes advantages of the huge potentialities of the gellan gum microgels in the preservation of cultural heritage. Microgels are polymeric gels particles with the micro and nanoscale size, whose soft nature is due to the presence of the aqueous solvent inside the particle. For their small size, they can easily diffuse in the environment and penetrate in the porous structure of paper and wood to act as cleaner agent.
NIRS is a non-invasive technique for the human brain cortex imaging based on the measurement of the NIR light emitted by suitable optical sources placed on the patient head and backdiffused to the surface after passing through the brain tissues. NIRS monitors the percentage of oxygenated and reduced hemoglobin in the blood, and it allows the real time functional imaging of the brain cortex also in tomographic mode (Diffuse Optical Tomography - DOT).
Mergers e Acquisitions represent important forms of business deals because of the volumes involved in the transactions and the role of the innovation activity of companies. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
The proposed technology deals with the development of active SERS (Surface Enhanced Raman Scattering) substrates ad hoc designed for diagnostics of cultural heritage. The substrates are prepared starting from common commercial 'polishing film' sheets (lapping optical fibers) showing an intrinsic roughness (48- 1000 nm) that favors the SERS effect. A pattern of silver or gold nanoparticles are deposited on these films through Pulsed Laser Deposition (PLD).
The instrument which is under development is a non-conventional portable Raman spectrometer. Raman spectrometers provide the molecular composition of the material surfaces, essential for their identification. The instrument peculiarity relies in the simultaneous acquisition of Raman spectra at imaged position and at different micrometric distances (offset) from the laser illumination area.