Plants have a huge potential to contribute to the solution of a large number of issues facing the modern world, ranging from a poor crop yields and problems caused by global climate changing. Our team has been on the forefront of the PCR and NGS applications to plant responses to biotic and abiotic stress. As experts in genomics and plant pathology we are able to accelerate the understanding and use of plant genes and resources.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 16 - 30 of 59
Combined use of High-Resolution Nuclear Magnetic Resonance (NMR) spectroscopy in solution and multivariate statistical analysis for the geographical differentiation of Italian and Chinese concentrated tomato paste. Particularly the metabolites content of acqueos exctrats of concentrated tomato paste is evaluated.
Anthocyanins are antioxidant polyphenolic pigments produced by plants that are widely used in the food, cosmetic and pharmaceutical industries. The technology allows to obtain in a short time potato cell lines in which the production of highly acetylated and highly complex anthocyanins is increased in addition to other antioxidant polyphenolic compounds. The obtained cellular lines have a high production efficiency, comparable to the extraction of berries, but with the advantage of having an on-demand production which is not limited to seasonality.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.
Characterization of authenticity of honey by the combined use of high resolution Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis. Particularly, based on our database, different characterization involving authentication assessment, like botanical or geographical origin determination are possible. Moreover, it is possible to detect saccharides addictions like inulin, corn/malt syrups, and inverted sugar. Finally, it is possible to distinguish the Italian biological honey from the conventional one.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
Our idea come from the improving of the traceability technique in agro-food fisheries industries through the application of omics technologies in microbiota studies. These latter would be capable of exploiting the huge pool of biological molecules contained in fishery resources (e.g. nucleic acids, proteins, metabolites) and use them as a powerful tools for the identification and reconstruction of fishery history, from the sea to the table.
The technology based on cell or tissue cultures is very useful for the production of bioactive compounds. These molecules, depending on the class they belong to, can be used in the food, pharmaceutical and cosmetic industry. In particular, the developed technology is addressed to the optimization of bioactive compounds in plant cell/tissue cultures having the biosynthetic pathway of the compound of interest.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
We propose a compact innovative spectroscopy system operating in the UV range. In the actual version, designed for gas, it exhibits: an aluminium tubular optical chamber (length can be adjusted; currently is 20 cm); a cheap commercial UV LED; a SiC visible blind UV detector designed and manufactured at the CNR-IMM facilities. The team developed also the electronic chain for wireless remote real time read out; while able to deal with pA current levels, it uses very cheap components and construction technology.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.