Bivalve mollusc shells are made mainly of CaCO3 (ca 95%), with a small fraction of organic material. If from these shells this mineral is retrieved, they could become a renewable and sustainable “mine” of a “blue” CaCO3. Bivalve mollusc shells, also after the removal of the animal flesh, maintain a certain quantity of organic substances, part in the muscle and part in the shell.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 24
The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).
Leishmaniasis is a zoonosis caused by the protozoan of the genus Leishmania, which affects both humans and animals through a phlebotomist. After malaria and lymphatic filariasis, leishmaniasis is the third most common disease on a global scale. Leishmania infantum is the species spread in the European continent and the Mediterranean basin. In Italy, from the hilly coastal areas and major islands, the infection has spread to many pre-Alpine areas and northern Italy.
B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
Inert biomedical devices with modular load-bearing function designed with peculiar multi-domain composite microstructures. The reference compositional system is Zirconia-Alumina with a prevailing overall composition of customizable zirconia or alumina. Examples of devices are 3D structures consisting of parts with differentiated functional properties, due to different composition/microstructure/architecture, and further functionalizable ex-post to favor and improve the stabilization of the implantation by newly formed bone in superior quantity and quality.
The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures