The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 6 of 6
The containers for plants and the like have different shapes, an open top to facilitate irrigation and material supply; a base that includes one or more holes to facilitate proper water drainage and to ensure ventilation for the rooting apparatus. An inconvenience of these containers is related to their placement in outdoor environments without roofs: in the presence of "unfavorable" climatic conditions, excessive exposure to rain water rather than excessive exposure to the sun, these containers expose plants to a series of problems.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Plants have a huge potential to contribute to the solution of a large number of issues facing the modern world, ranging from a poor crop yields and problems caused by global climate changing. Our team has been on the forefront of the PCR and NGS applications to plant responses to biotic and abiotic stress. As experts in genomics and plant pathology we are able to accelerate the understanding and use of plant genes and resources.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.