B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 4 of 4
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
Design and testing of neoproteins with optimized nutritional value, according to needs, avoiding their degradation - thus maintaining a high production yield - and aggregation (which could make them indigestible). Neoproteins are produced and characterized in plant systems as bioreactors. We have already created zeolin, formed by the fusion of a bean seed protein with a portion of a maize seed protein.
The substitution of fossil derived monomers in thermosetting resins is a very important point to look at to face environmental impact issues related with the use of traditional resins. The research group set up a protocol for the preparation of thermosetting resins starting from vegetable oils with different composition to substitute the petroleum-based monomers. The materials obtained in this way have a bio-based carbon content higher than 80%.