The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 21
B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
The containers for plants and the like have different shapes, an open top to facilitate irrigation and material supply; a base that includes one or more holes to facilitate proper water drainage and to ensure ventilation for the rooting apparatus. An inconvenience of these containers is related to their placement in outdoor environments without roofs: in the presence of "unfavorable" climatic conditions, excessive exposure to rain water rather than excessive exposure to the sun, these containers expose plants to a series of problems.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Plants have a huge potential to contribute to the solution of a large number of issues facing the modern world, ranging from a poor crop yields and problems caused by global climate changing. Our team has been on the forefront of the PCR and NGS applications to plant responses to biotic and abiotic stress. As experts in genomics and plant pathology we are able to accelerate the understanding and use of plant genes and resources.
We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
We propose a compact innovative spectroscopy system operating in the UV range. In the actual version, designed for gas, it exhibits: an aluminium tubular optical chamber (length can be adjusted; currently is 20 cm); a cheap commercial UV LED; a SiC visible blind UV detector designed and manufactured at the CNR-IMM facilities. The team developed also the electronic chain for wireless remote real time read out; while able to deal with pA current levels, it uses very cheap components and construction technology.
WembraneX is an Italian start-up born with the ambition to make a significant contribution to UN Sustainable Goal 6 - Ensure Access to Clean Water and Sanitation for all by 2030.
Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
Design and testing of neoproteins with optimized nutritional value, according to needs, avoiding their degradation - thus maintaining a high production yield - and aggregation (which could make them indigestible). Neoproteins are produced and characterized in plant systems as bioreactors. We have already created zeolin, formed by the fusion of a bean seed protein with a portion of a maize seed protein.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
Combinations of several enzymes in a production chain are preferred to “first generation” enzymatic processes (where the "single reaction - single enzyme" principle was followed), for the synthesis of compounds with high added value starting from simple and cheap substrates. An important requirement for obtaining control in "cascade enzymatic reactions" is the ability to deliver from one biocatalyst to the next one the various intermediates, limiting as much as possible the diffusion of the latter in the solvent.