A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 21
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
The development of functional foods is often limited by industrial manufacturing processes, for example, for the production of baked foods, the use of high cooking temperatures causes denaturation of proteins, destruction of vitamins, alteration of fatty acids, etc. The protection of these components is essential in the production of gluten-free foods as they are generally poor in proteins and vitamins.
Combined use of High-Resolution Nuclear Magnetic Resonance (NMR) spectroscopy in solution and multivariate statistical analysis for the geographical differentiation of Italian and Chinese concentrated tomato paste. Particularly the metabolites content of acqueos exctrats of concentrated tomato paste is evaluated.
Anthocyanins are antioxidant polyphenolic pigments produced by plants that are widely used in the food, cosmetic and pharmaceutical industries. The technology allows to obtain in a short time potato cell lines in which the production of highly acetylated and highly complex anthocyanins is increased in addition to other antioxidant polyphenolic compounds. The obtained cellular lines have a high production efficiency, comparable to the extraction of berries, but with the advantage of having an on-demand production which is not limited to seasonality.
We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
Our idea come from the improving of the traceability technique in agro-food fisheries industries through the application of omics technologies in microbiota studies. These latter would be capable of exploiting the huge pool of biological molecules contained in fishery resources (e.g. nucleic acids, proteins, metabolites) and use them as a powerful tools for the identification and reconstruction of fishery history, from the sea to the table.
The technology based on cell or tissue cultures is very useful for the production of bioactive compounds. These molecules, depending on the class they belong to, can be used in the food, pharmaceutical and cosmetic industry. In particular, the developed technology is addressed to the optimization of bioactive compounds in plant cell/tissue cultures having the biosynthetic pathway of the compound of interest.
Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.
We have identified compounds that show a neuroprotective action in vivo, in models of neurodegenerative diseases (e.g. SMA, Parkinson, Alzheimer, Huntington) in the model organism C. elegans. These compounds consist of: mixtures of 22 natural extracts, 15 natural molecules and 11 synthetic molecules.
Cheese making is an ancient practice to preserve perishable food such as milk for a long time. The first phase of cheese making involves the addition of rennet of animal origin, which contains the enzymes necessary for the hydrolysis and coagulation of milk caseins, and for cheese ripening (mainly lipase/esterase).
Design and testing of neoproteins with optimized nutritional value, according to needs, avoiding their degradation - thus maintaining a high production yield - and aggregation (which could make them indigestible). Neoproteins are produced and characterized in plant systems as bioreactors. We have already created zeolin, formed by the fusion of a bean seed protein with a portion of a maize seed protein.
The systems simulate, with high reproducibility, the conditions that occur in the different compartments of the gastrointestinal tracts and are promising to accurately mimic the digestive process, with the possibility to evaluate bioaccessibility and bioavailability. Moreover, the systems permit to study the synergic and reciprocal effects between the bioactive compounds characteristic of food and intestinal microbiota.
Combinations of several enzymes in a production chain are preferred to “first generation” enzymatic processes (where the "single reaction - single enzyme" principle was followed), for the synthesis of compounds with high added value starting from simple and cheap substrates. An important requirement for obtaining control in "cascade enzymatic reactions" is the ability to deliver from one biocatalyst to the next one the various intermediates, limiting as much as possible the diffusion of the latter in the solvent.