Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 5 of 5
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
Spark anemometry based on the analysis of an electrical discharge can be implemented in the automotive sector through measurements of the secondary circuit voltage. Actual applicability of this method is quite limited, given that it requires additional hardware that is not compatible with space requirements specific for production engines (e.g. fueled with gasoline, LPG or methane); furthermore, applying high voltage measurements is complex and entails increased cost.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.
WSense provides customizable and modular real-time, bi-directional, in-situ monitoring tools capable of sending real-time alarms. It makes possible to monitor the entire water column, on areas that can scale from a few tens of square meters to hundreds or thousands of square meters depending on the number of nodes deployed as needed. The monitoring system is implemented using submarine wireless communication nodes (W-Nodes) integrated with probes to monitor various parameters.