Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 5 of 5
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:
(i) low cost of equipment and chemicals
(ii) large area deposition
(iii) low crystallisation temperatures
Spark anemometry based on the analysis of an electrical discharge can be implemented in the automotive sector through measurements of the secondary circuit voltage. Actual applicability of this method is quite limited, given that it requires additional hardware that is not compatible with space requirements specific for production engines (e.g. fueled with gasoline, LPG or methane); furthermore, applying high voltage measurements is complex and entails increased cost.
WSense provides customizable and modular real-time, bi-directional, in-situ monitoring tools capable of sending real-time alarms. It makes possible to monitor the entire water column, on areas that can scale from a few tens of square meters to hundreds or thousands of square meters depending on the number of nodes deployed as needed. The monitoring system is implemented using submarine wireless communication nodes (W-Nodes) integrated with probes to monitor various parameters.