Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 8 of 8

# Record card
161
Description

AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).

Thematic areas
Health & Biotech
Health & Biotech / Bio-informatics
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Development of new drugs
Energy and environmental sustainability
Energy and environmental sustainability / Simulation
# Record card
52
Description

Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit,  by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.

Thematic areas
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical imaging & equipment
Health & Biotech / Smart Devices for Health and Wellness
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Optical materials
Materials / Processes of production & treatment of materials
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Sensory
# Record card
19
Description

We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.

Thematic areas
Tourism, social sciences and cultural heritage / Archeometry
Tourism, social sciences and cultural heritage / Safety and security
Chemicals & Physics / Imaging & image processing
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Chemicals & Physics / Atomic and molecular spectroscopy
# Record card
160
Description

At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Atomic and molecular spectroscopy
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
# Record card
29
Description

The aim of the research group is the creation of 3D models (microorgan/ organoids) constructed using samples obtained from patients, both biopsy samples and samples collected with non-invasive techniques (exhaled breath condensate, induced sputum, blood samples).

Thematic areas
Health & Biotech / New therapies
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
# Record card
94
Description

The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.

Thematic areas
Chemicals & Physics / Imaging & image processing
ICT & Electronics / Laser technologies
ICT & Electronics / Optics & Acoustic
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Sensory
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Chemicals & Physics / Quantum optics
Materials / Optical materials
Chemicals & Physics / Atomic and molecular spectroscopy
ICT & Electronics / Telecommunications
# Record card
76
Description

The platform allows acquisition of data from commercial and custom sensors. By now, the system has been embedded in a wearable wristband where elastomeric based strain gauge have been integrated to detect fine hand/wrist/arm movements. The platform integrates inertial sensors (accelerometers, gyroscopes) to acquire more details about the subject movements. A sensor-fusion algorithm enables advanced movement recognition (gesture, 3D orientation). A machine-learning algorithm is in development to increase the performance of the platform.

Thematic areas
Health & Biotech / Smart Devices for Health and Wellness
ICT & Electronics / Internet of Things
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
# Record card
256
Description

Environmental monitoring is a rapidly growing field, both in academia and industry. The use of wearables for environmental monitoring is a promising technique, as it allows data to be collected continuously and comprehensively. The main problem with using wearables for environmental monitoring is the size and weight of the system, as well as the high degree of specialization required to develop a fully functional device.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Energy and environmental sustainability
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Wearable technologies
Health & Biotech
Health & Biotech / Smart Devices for Health and Wellness
ICT & Electronics / Internet of Things
Tourism, social sciences and cultural heritage / Safety and security