A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 10 of 10
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
Extracellular vesicles produced by teratocarcinoma cells were isolated and characterized. Functional assays on glioblastoma (GBM) cell cultures showed the inhibitory effect of these vesicles on tumor cell migration, without inducing undesirable effects such as increased cell proliferation or chemotherapy resistance.
With the advent of senolytic agents, capable of selectively removing senescent cells in “aged” tissues, the perception of age-associated diseases has changed from being an inevitable to a preventable phenomenon of human life. The present invention is part of this research topic with the identification of molecules with potential pro-apoptotic activity, specifically with senolytic activity. The computational approach adopted, is based on combining ligand-base and structure-based virtual screening.
Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.
This is a high-throughput sequencing based method to map euchromatin and heterochromatin accessibility. The method is based on the sequential extraction of distinct nuclear fractions containing: soluble proteins (S1 fraction); the surnatant obtained after DNase treatment (S2 fraction); DNase-resistant chromatin extracted with high salt buffer (S3 fraction); and the most condensed and insoluble portion of chromatin, extracted with urea buffer that solubilizes the remaining proteins and membranes (S4 fraction).
TNBC affects around 170,000 patients worldwide each year and accounts for 15-20% of breast cancer; compared to other types of breast cancer, TNBC is more aggressive and precocious. Its diagnosis, made difficult by the existence of subtypes with different characteristics, is fundamental to establish prognosis and personalized therapy. Nucleic acid aptamers are highly selective low-molecular-weight molecules, synthesizable at low cost and easily modifiable, capable of binding and detecting tissue markers ("aptahistochemistry”). Our team has iden
The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.
We present a technology for the multiscale isolation (analytical-laboratory-production) of Extracellular Vesicles (VE), which overcomes the limitations of the currently available methods. As opposed to traditional "affinity-based" systems that exploit antibodies, our technology represents a radical paradigm shift in the development of affinity probes for vesicles, i.e.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.