AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 24
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
The Biocrystal Facility, a large multidisciplinary laboratory established at the Institute of Molecular Biology and Pathology (IBPM) of CNR, in collaboration with the Biochemistry Department of Sapienza University aims at supporting the italian scientists and the pharmaceutical companies in the research to find new drug and vaccine against the endemic and epidemic diseases through structure-based drug design.
A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
The virtual dynamic docking, carried out in the MOLBD3 lab of the Institute of Biophysics, allows the identification of new drugs through the structural information deriving from the study of target proteins, responsible for some human pathologies. In particular, we screen drugs or small molecules (commercial/own libraries) against known protein sites, surface cavities, surfaces of protein-protein interactions (fixed/rigid hotspots) or structural transition states (dynamic hotspots).
Health360 is a software framework for building cloud platforms to monitor the health of subjects recruited in clinical trials, residents of social housing or athletes in sports teams. The framework is based on interconnected and configurable modules to implement platforms that meet specific needs while maintaining a high level of usability.
In the last years, genetics played a strategic role in the identification of therapeutic targets for complex diseases. Genetic studies identified thousands of variants contributing to disease onset and/or to the influence of measurable features (phenotypes) impacting health. The mechanism of action by which they modulate diseases and phenotypes is still unknown for the vast majority.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
Data loggers for environmental data recording have been commercially available for several years, but their cost often limits their use. The development of low-cost data loggers, with adequate features for the acquisition of environmental and physiological data, to understand the relationships between organisms and the environment, and capable of recording and storing data for long periods of time is essential for their diffusion in the naturalistic field.
We propose a compact innovative spectroscopy system operating in the UV range. In the actual version, designed for gas, it exhibits: an aluminium tubular optical chamber (length can be adjusted; currently is 20 cm); a cheap commercial UV LED; a SiC visible blind UV detector designed and manufactured at the CNR-IMM facilities. The team developed also the electronic chain for wireless remote real time read out; while able to deal with pA current levels, it uses very cheap components and construction technology.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.