Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 15 of 37

# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
25
Description

The Biocrystal Facility, a large multidisciplinary laboratory established at the Institute of Molecular Biology and Pathology (IBPM) of CNR, in collaboration with the Biochemistry Department of Sapienza University aims at supporting the italian scientists and the pharmaceutical companies in the research to find new drug and vaccine against the endemic and epidemic diseases through structure-based drug design.

Thematic areas
Health & Biotech / Bio-informatics
Health & Biotech / Nanomedicine
Health & Biotech / Development of new drugs
# Record card
31
Description

The assessment of bio-humoral markers beyond clinical evaluation would allow a more comprehensive pheno/endotyping of patients affected by chronic inflammatory diseases. Therapy personalization would require a profile of the mediators that are relevant in the disease pathogenesis and that well correlate with prognosis. Currently, the measurement of multiple biomarkers is not included in patient evaluation because it has high costs,  requires centralized laboratories, experienced personnel and bulky equipment and is time-consuming.

Thematic areas
Health & Biotech / Bio-medicals
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Biosensors
# Record card
28
Description

The portable device is intended to assess exposure to electromagnetic fields produced by an MRI equipment. The device (dosimeter) allows to improve the analysis and study of the problems related to the exposure of the operators, starting from the technical-scientific aspects related to the exposure, also allowing to create a manual of best practices as well as to improve the professional training of operators.

Thematic areas
Health & Biotech / Bio-medicals
ICT & Electronics / Electronics and microelectronics
# Record card
150
Description

The virtual dynamic docking, carried out in the MOLBD3 lab of the Institute of Biophysics, allows the identification of new drugs through the structural information deriving from the study of target proteins, responsible for some human pathologies. In particular, we screen drugs or small molecules (commercial/own libraries) against known protein sites, surface cavities, surfaces of protein-protein interactions (fixed/rigid hotspots) or structural transition states (dynamic hotspots).

Thematic areas
Health & Biotech
Health & Biotech / Development of new drugs
Health & Biotech / Bio-medicals
Health & Biotech / Bio-informatics
# Record card
52
Description

Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit,  by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.

Thematic areas
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical imaging & equipment
Health & Biotech / Smart Devices for Health and Wellness
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Optical materials
Materials / Processes of production & treatment of materials
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Energy and environmental sustainability / Sensory
# Record card
181
Description

The proposed technology takes advantages of the huge potentialities of the gellan gum microgels in the preservation of cultural heritage. Microgels are polymeric gels particles with the micro and nanoscale size, whose soft nature is due to the presence of the aqueous solvent inside the particle. For their small size, they can easily diffuse in the environment and penetrate in the porous structure of paper and wood to act as cleaner agent.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Materials
Materials / Plastics, polymers
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
# Record card
36
Description

We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.

Thematic areas
Agrifood / Agriculture
Agrifood / Nutrition & health
Agrifood / Food quality & safety
# Record card
97
Description

Our idea come from the improving of the traceability technique in agro-food fisheries industries through the application of omics technologies in microbiota studies.  These latter would be capable of exploiting the huge pool of biological molecules contained in fishery resources (e.g. nucleic acids, proteins, metabolites) and use them as a powerful tools for the identification and reconstruction of fishery history, from the sea to the table.

Thematic areas
Agrifood / Nutrition & health
Agrifood / Food quality & safety
# Record card
16
Description

Detection devices for the presence of molecules of interest (analytes) enjoyed a renewed burst with the introduction of biological components (biosensors). Their high specificity is often used in various fields, from environmental monitoring and biomedicine to the protection and promotion of agri-food products. However, the high cost of production and the lack of compatibility with mass sampling (high-throughput) sometimes limit their use.

Thematic areas
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Health & Biotech / Smart Devices for Health and Wellness
Agrifood / Nutrition & health
Agrifood / Food quality & safety
Health & Biotech / Biosensors
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Health & Biotech / Micro and nanotechnology related to biological sciences
Energy and environmental sustainability / Sensory
Health & Biotech / Diagnostic kits
# Record card
160
Description

At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Atomic and molecular spectroscopy
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
# Record card
63
Description

Integrative omics has posed new challenges in modern precision medicine, particularly in oncology, including i) the identification of new tumor markers for early, precise, and non-invasive diagnostics, and ii) the discovery of innovative molecular targets for therapeutic applications. Our studies on medulloblastoma, a highly malignant childhood tumor, have contributed to identifying RNA molecules that meet these criteria.

Thematic areas
Health & Biotech / New therapies
# Record card
29
Description

The aim of the research group is the creation of 3D models (microorgan/ organoids) constructed using samples obtained from patients, both biopsy samples and samples collected with non-invasive techniques (exhaled breath condensate, induced sputum, blood samples).

Thematic areas
Health & Biotech / New therapies
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
# Record card
182
Description

An innovative approach for the treatment of diabetic and venous ulcers, characterized by a difficult healing process and therefore at potential risk of infection and therefore of hospitalization and amputation of the limb, is represented by the local administration of "bioactive" factors through the use of synthetic and/or biological matrices that allow a gradual and controlled release in order to obtain a better and faster healing.

Thematic areas
Health & Biotech
Health & Biotech / Bio-medicals
Health & Biotech / New therapies
Health & Biotech / Medical Device
Health & Biotech / Regenerative Medicine