A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 36
AIDD is an integrated tool and a radically new way to discovery new drugs for neurodegenerative diseases (Alzheimer’s, Epilepsy, Ageing, etc.).
A virtuous multi-step biorefinery platform to convert urban biowaste into valuable molecules, not disregarding renewable energy and digestate production. The strategy is based on the integration of a thermal pretreatment capable of significantly increasing the fraction of fermentable organic carbon, in order to furthermore change the status of the feedstock to become more suitable for production of a) high-value bio-based molecules, b) biomethane and c) hygienized digestate to be recycled as biofertilizer.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
Method for extracting, with high yield, phycobiliproteins from cyanobacterial and/or algal biomass, obtaining aqueous extracts characterized by high concentration of pigments (4-5 mg/mL) and a purity, at least equal to food/cosmetic grade (P≥2).
22q11.2DS(DGS) deletion syndrome is a rare and phenotypically variable multiorgan syndrome, currently without any cure. Our aim is to develop a standardized approach to formulate pharmacological products useful for clinical trials direct to prevent some serious clinical manifestations of adolescence and adulthood, such as neuropsychiatric and musculoskeletal diseases, or to eliminate or improve cardiovascular defects during embryonic development.
NIRS is a non-invasive technique for the human brain cortex imaging based on the measurement of the NIR light emitted by suitable optical sources placed on the patient head and backdiffused to the surface after passing through the brain tissues. NIRS monitors the percentage of oxygenated and reduced hemoglobin in the blood, and it allows the real time functional imaging of the brain cortex also in tomographic mode (Diffuse Optical Tomography - DOT).
INCIPIT technology allowed the implementation of a multifunctional, micro-structured and electroconductive therapeutic product to treat patients with myocardial infarction, the leading cause of death for cardiovascular disease. Current therapies (drugs, bypass, angioplasty) do not restore the functionality of damaged myocardial tissue.
Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.
Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
Therapeutic strategies targeting cell cycle in cancer have in general failed in the clinic since the drugs have lacked the therapeutic index required to achieve a robust response against cancer cells with little or no cytotoxic effect on normal cells. NEK6 kinase, which is implicated in cell cycle control, has recently emerged as an attractive target for the development of novel anticancer drugs with enhanced therapeutic index.