Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 10 of 10

# Record card
171
Description

B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Internet of Things
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
Bioeconomy
Materials
Materials / Photo-active & graphene-based materials
Materials / Semiconductors and Superconductors
Materials / Composite and hybrid materials
Materials / Plastics, polymers
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Special chemicals
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy storage and transport
Energy and environmental sustainability / Energy production, transmission and conversion
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Wearable technologies
Energy and environmental sustainability / Sensory
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
# Record card
69
Description

The aim of the present invention is to develop a modular scintigraphic device, with high spatial resolution, capable of creating investigation areas of various shapes and sizes, of compact form and of being used in different types of applications.

Thematic areas
Health & Biotech / Bio-medicals
Health & Biotech / Medical imaging & equipment
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
# Record card
42
Description

The present invention relates to a gamma camera for intracavitary use, which is widely used in the field of radio-guided surgery (intra-operative and laparoscopic and robotic-assisted) for the localisation of lymph nodes and tumours and/or other pathologies. The aim of the present invention is to make available an intraoperative tool able to overcome the drawbacks of the present known art.

Thematic areas
Health & Biotech / Bio-medicals
Health & Biotech / Medical imaging & equipment
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
# Record card
19
Description

We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.

Thematic areas
Tourism, social sciences and cultural heritage / Archeometry
Tourism, social sciences and cultural heritage / Safety and security
Chemicals & Physics / Imaging & image processing
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Chemicals & Physics / Atomic and molecular spectroscopy
# Record card
55
Description

The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.

Thematic areas
ICT & Electronics / Cybersecurity
ICT & Electronics / Network technology, network security
ICT & Electronics / Future Internet
ICT & Electronics / Big Data
ICT & Electronics / Artificial Intelligence
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Microwaves and RF
ICT & Electronics / Telecommunications
Aerospace and Earth Science / Satellite technologies
# Record card
160
Description

At IFN-CNR, in collaboration with Politecnico di Milano-Department of Physics, we have developed Raman microscopy approaches compatible with the study and characterization of biological and industrial samples. In detail, our facility houses a self-built spontaneous confocal Raman microscope with the following characteristics: two excitation lasers (660nm and 785nm), inverted microscope (Olympus IX-73) and Princeton spectrometer / CCD.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Atomic and molecular spectroscopy
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Biosensors
# Record card
11
Description

Chemical solution deposition of metal-organic precursors have favoured the research and development of thin films of simple and complex oxides such as Pb(Zr,Ti)O3, and Al2O3, up to their industrial application in pyroelectric and capacitor devices. Deposition methods used are spin-on and dip-coating. The advantages of the techniques are:

(i) low cost of equipment and chemicals

(ii) large area deposition

(iii) low crystallisation temperatures

Thematic areas
Chemicals & Physics / Inorganic substances
Materials / Ceramic materials
Materials / Semiconductors and Superconductors
Materials / Glass
Materials / Optical materials
# Record card
258
Description

The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Health & Biotech / Medical Device
Energy and environmental sustainability
Energy and environmental sustainability / Environmental engineering/technologies
Chemicals & Physics / Inorganic substances
Energy and environmental sustainability / Sensory
Chemicals & Physics / Organic substances
Chemicals & Physics / Colours & dyes
Materials
# Record card
40
Description

Recently, it has been demonstrated that Raman spectroscopy can play a fundamental role in assisting the work of the anatomopathologist by allowing classification of oncological samples with practically 100% accuracy in oncological diagnosis.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
ICT & Electronics / Artificial Intelligence
# Record card
67
Description

This is a high-throughput sequencing based method to map euchromatin and heterochromatin accessibility. The method is based on the sequential extraction of distinct nuclear fractions containing: soluble proteins (S1 fraction); the surnatant obtained after DNase treatment (S2 fraction); DNase-resistant chromatin extracted with high salt buffer (S3 fraction); and the most condensed and insoluble portion of chromatin, extracted with urea buffer that solubilizes the remaining proteins and membranes (S4 fraction).

Thematic areas
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits