Ageing characterization of Balsamic Vinegar of Modena (BVM) and Traditional Balsamic Vinegar of Modena (TBVM) by the combined use of Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis. Our database allows to differentiate BVM from TBVM samples. Moreover, within BVMs, samples with ageing <3/>3 years can be discriminated and within TBVM, samples with ageing between 12 and 25 years as well as >25 years can be discriminated.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 11 of 11
Direct quantification of the percentage of arabica in roasted and ground coffee blends of arabica/robusta by High Resolution Nuclear Magnetic Resonance spectroscopy (NMR), in solution and multivariate statistical analysis. Particularly, the metabolites content present in water extracts of coffee is analyzed and compared with NMR data of our database.
Combined use of High-Resolution Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis for the differentiation of PDO Parmigiano Reggiano samples according to ripening and for the differentiation of PDO Parmigiano Reggiano from “Grana type” products available on the market.
Combined use of High-Resolution Nuclear Magnetic Resonance (NMR) spectroscopy in solution and multivariate statistical analysis for the geographical differentiation of Italian and Chinese concentrated tomato paste. Particularly the metabolites content of acqueos exctrats of concentrated tomato paste is evaluated.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
We developed a procedure aimed at simultaneously treating thousands of C.elegans model organisms, from eggs to old adult, in liquid, in 96- or 384-well plates. This procedure can be used to perform drug and toxicological screening of millions of compounds, in very small volumes and on millions of animals. Thanks to easy handling, semi-automatic analysis can be performed using plate readers or High Content Screening instruments.
Characterization of authenticity of honey by the combined use of high resolution Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate statistical analysis. Particularly, based on our database, different characterization involving authentication assessment, like botanical or geographical origin determination are possible. Moreover, it is possible to detect saccharides addictions like inulin, corn/malt syrups, and inverted sugar. Finally, it is possible to distinguish the Italian biological honey from the conventional one.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
High-Resolution Nuclear Magnetic Resonace (NMR) in solution also combined with multivariate statistical analysis to determine the quality and authenticity of saffron. Particularly the content of components (metabolites) is evaluated.
To the enterprises working in the field of nutrition/nutraceutics and drug development/repositioning, we offer the know-how and state-of-the-art instrumentation of our labs to monitor multiple relevant biological parameters at the cellular level: metabolic activity, vitality, health, but also stress and toxicity. The use of advanced imaging techniques based on fluorescent/bioluminescent probes together with the availability of time-lapse acquisitions, guarantee the cutting-edge analysis of different biological parameters over time.
The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.