The instrumentation is based on the electrical resistivity tomography (ERT) which is a non-invasive geophysical technology used to obtain information on anomalous bodies possibly present in the subsoil. The theoretical basis lies in the different electrical properties of the lithotypes present in the subsoil.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 16 - 30 of 35
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.
The invention relates to the water purification sector; it refers to a phytodepuration module and to a plant including this module. The objective is decontamination and recovery of drinking water from contaminated springs and wells, thermal, rainwater, wastewater and industrial wastewater. Phytodepuration tanks are known which use ferns to decontaminate water, but have the limits of requiring large surfaces and / or long treatment times.
The technology concerns planar optical antennas composed of thin metal films and dielectric materials for the efficient direction of the light emitted by light sources, such as fluorescent molecules and bio-markers. They consist of a reflector layer, adjacent to the substrate, and a director, semi-reflective, between which the emitter is positioned, integrated into a homogeneous dielectric layer.
The prototype uses soil moisture sensors which, through a measurement of dielectric permittivity, estimate the soil moisture based on which irrigation is started through relay-controlled solenoid valve. The system was developed using Open Source technologies. Specifically, for the hardware components, a small sized board computer Raspberry PI 3B + was used together with a 4G LTE Wi-Fi router and a Modbus rs485 / USB converter.
AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.
The study of proteins is typically limited to notions, sometimes with the aid of virtual 3D models, obtained from visualization programs. A knowledge of this type, although useful, limits the ability to acquire a more direct knowledge, almost never leads to awareness of dimensions, and is particularly difficult for those who do not have a strong capacity for three-dimensional imagination.
The proposed technology is about the development of an innovative sunscreen obtained from cod fish bones, according to the principles of the circular economy. The sunscreen is a reddish powder, which is constituted of hydroxyapatite (a calcium phosphate main component of human bones) modified with iron. It is prepared with a simple and easily scalable process (treatment of the bones in Fe solution and successively at T = 700 oC) and could be adapted for bones of other fishes.
Electrochromism is an optoelectronic characteristic of particular interest because it can be exploited in the creation of technologies such as smart windows (Smart Windows) to promote energy efficiency, automotive, sensor or visualization devices. Electrochromic materials change their optoelectronic characteristics, showing different colors depending on the applied electric field.
The invention concerns an apparatus for measuring the three-dimensional (3-D) sea surface elevation from moving and floating platforms. In particular, the invention consists of two or more synchronized digital video-cameras that frame, from distinct and remote points of view, a common portion of the sea surface. A triangulation process makes it possible to obtain a three-dimensional reconstruction of the sea surface from these images. The invention is particularly suitable for measuring sea waves.
Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.
uManager is a management game designed to foster the development of young students' entrepreneurial skills and abilities. The game offers the opportunity to manage a tourist village, stimulating the skills of decision making and problem-solving in a simulated scenario adhering to the real one. uManager is suitable for use in the classroom or at a distance, in formal and informal contexts.