Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 6 of 6

# Record card
154
Description

The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).

Thematic areas
Chemicals & Physics
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability
Energy and environmental sustainability / Waste management
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Energy production, transmission and conversion
Bioeconomy
# Record card
102
Description

The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.

Thematic areas
Energy and environmental sustainability / Environmental engineering/technologies
Materials / Photo-active & graphene-based materials
Agrifood / Marine resources
Materials / Composite and hybrid materials
Chemicals & Physics / Separation technologies
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Pollution treatment (air, soil, water)
# Record card
74
Description

The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.

Thematic areas
Materials / Properties of materials, corrosion, degradation
Additive and advanced industrial manufacturing / Packaging
Energy and environmental sustainability / Renewable sources
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Waste management
Bioeconomy
# Record card
130
Description

The software is based on mathematical models able of simulating the time evolution of the different stages of a pest population starting from environmental data collected from weather stations located in an area of interest and information regarding the development stage of the host plant. The models are of two types: phenological, which provides information on the stages population as a function of time and demographic which also allows to know the abundance of each population stage.

Thematic areas
Energy and environmental sustainability
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Simulation
Agrifood
Agrifood / Food quality & safety
# Record card
162
Description

Grape pomace, a by-product of wine-making, is rich in polyphenols, metals, organic acids and can become a functional ingredient in food and beverage. The stabilisation of the pomace has been optimised to preserve the anti-inflammatory and antioxidant properties of the molecules present. Isolated grape skins have been reused in purity or in blends with other plant components as a base for: 1) herbal teas, 2) ready-to-drink functional beverages, 3) freeze-dried products.

Thematic areas
Agrifood
Agrifood / Nutrition & health
Bioeconomy
Energy and environmental sustainability
Energy and environmental sustainability / Renewable sources
# Record card
79
Description

Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.

Thematic areas
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Agrifood / Agriculture
Health & Biotech / Nanomedicine
Health & Biotech / Medical Device
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Organic substances
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers