Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 16 - 21 of 21

# Record card
59
Description

The prototype uses soil moisture sensors which, through a measurement of dielectric permittivity, estimate the soil moisture based on which irrigation is started through relay-controlled solenoid valve. The system was developed using Open Source technologies. Specifically, for the hardware components, a small sized board computer Raspberry PI 3B + was used together with a 4G LTE Wi-Fi router and a Modbus rs485 / USB converter.

Thematic areas
Agrifood / Agriculture
Energy and environmental sustainability / Environmental engineering/technologies
ICT & Electronics / Internet of Things
# Record card
47
Description

AIS aim is a robotized inclinometer measurement in standard inclinometer boreholes. The deep measurements have multiple applications, including: evaluating the rate of deep-seated ground deformation in landslide areas, evaluating the volume of deep-seated landslides and assessing landslide hazards. The AIS is composed by an electronic control manager, an inclinometer probe and an electric motor equipped with a high precision encoder for handling and continuous control of the probe in the borehole.

Thematic areas
Energy and environmental sustainability / Environmental engineering/technologies
Aerospace and Earth Science / Geological engineering
Energy and environmental sustainability / Sensory
Measurement tools and Standards
ICT & Electronics / Robotics and control systems
Energy and environmental sustainability / Natural disasters
# Record card
130
Description

The software is based on mathematical models able of simulating the time evolution of the different stages of a pest population starting from environmental data collected from weather stations located in an area of interest and information regarding the development stage of the host plant. The models are of two types: phenological, which provides information on the stages population as a function of time and demographic which also allows to know the abundance of each population stage.

Thematic areas
Energy and environmental sustainability
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Simulation
Agrifood
Agrifood / Food quality & safety
# Record card
245
Description

Spark anemometry based on the analysis of an electrical discharge can be implemented in the automotive sector through measurements of the secondary circuit voltage. Actual applicability of this method is quite limited, given that it requires additional hardware that is not compatible with space requirements specific for production engines (e.g. fueled with gasoline, LPG or methane); furthermore, applying high voltage measurements is complex and entails increased cost.

Thematic areas
Automotive transport and logistics
Automotive transport and logistics / Innovative fuels
Automotive transport and logistics / Propulsion
Energy and environmental sustainability
Energy and environmental sustainability / Sensory
ICT & Electronics
ICT & Electronics / Electronics and microelectronics
# Record card
39
Description

The invention concerns an apparatus for measuring the three-dimensional (3-D) sea surface elevation from moving and floating platforms. In particular, the invention consists of two or more synchronized digital video-cameras that frame, from distinct and remote points of view, a common portion of the sea surface. A triangulation process makes it possible to obtain a three-dimensional reconstruction of the sea surface from these images. The invention is particularly suitable for measuring sea waves.

Thematic areas
Aerospace and Earth Science / Oceanography
Energy and environmental sustainability / Renewable sources
# Record card
256
Description

Environmental monitoring is a rapidly growing field, both in academia and industry. The use of wearables for environmental monitoring is a promising technique, as it allows data to be collected continuously and comprehensively. The main problem with using wearables for environmental monitoring is the size and weight of the system, as well as the high degree of specialization required to develop a fully functional device.

Thematic areas
ICT & Electronics
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
Energy and environmental sustainability
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Wearable technologies
Health & Biotech
Health & Biotech / Smart Devices for Health and Wellness
ICT & Electronics / Internet of Things
Tourism, social sciences and cultural heritage / Safety and security