B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 9 of 9
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.
In the last years, hop culture has spread throughout Italy, and the vegetative biomass disposal, after harvesting of cones, used for beer production, became a serious problem for hop growers. Hop plant contains in all parts, cones, shoots, leaves and roots, bioactive compounds, with proven and important antiviral, antibacterial and antioxidant properties.
Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
The proposed technology is based on the concept of Power-Over-Fibre (PoF), which involves the transmission of data and power over an optical fiber. This technology is suitable for applications where traditional copper cabling is impractical or undesirable. This is the case with pantographs, where there is a large potential difference between the catenary and the earth, and therefore any electrical contact must be avoided for safety reasons. Furthermore, pantographs operate in an environment with very high electromagnetic interference (EMI).
The present technology deals with jewels based on shape memory alloys and fabricated through additive manufacturing. In ICMATE-Lecco laboratories, several NiTi-based rings have been fabricated through a powder bed fusion technology (selective laser melting technique).
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.