Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 16 - 27 of 27

# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
158
Description

Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and  its design and optimization to be oriented.

Thematic areas
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Materials
Materials / Wood products
Health & Biotech
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Development of new drugs
Health & Biotech / Regenerative Medicine
Health & Biotech / Care, Hygiene, Cosmetics
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science
Aerospace and Earth Science / Aeronautical technologies and avionics
Tourism, social sciences and cultural heritage / Multimedia technologies
Tourism, social sciences and cultural heritage / Archaeology
Agrifood
Agrifood / Agriculture
Agrifood / Food quality & safety
Automotive transport and logistics
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Innovative fuels
Chemicals & Physics
Energy and environmental sustainability
# Record card
260
Description
Thematic areas
Agrifood
Agrifood / Nutrition & health
Agrifood / Food quality & safety
Health & Biotech
Health & Biotech / Development of new drugs
Additive and advanced industrial manufacturing
Health & Biotech / Biosensors
Health & Biotech / Bio-medicals
Chemicals & Physics
Additive and advanced industrial manufacturing / Packaging
Chemicals & Physics / Agro chemicals
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Health & Biotech / Diagnostic kits
Chemicals & Physics / Colours & dyes
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Detergents & cleaning technologies
# Record card
170
Description

The present technology deals with jewels based on shape memory alloys and fabricated through additive manufacturing. In ICMATE-Lecco laboratories, several NiTi-based rings have been fabricated through a powder bed fusion technology (selective laser melting technique).

Thematic areas
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Materials
Materials / Metals & alloys
# Record card
13
Description

The invention consists in a special regulation method of the horizontal axes of operating and rubbing wheels of a centerless grinding machine coupled with an opportune blade profile, allowing a continuous regulation of blade rest angle (angle between tangent to blade profile at the contact point with the work piece and the horizon, denoted by γ) and workpiece height (denoted by hw), without requiring blade substitution and/or manual regulations.

Thematic areas
Additive and advanced industrial manufacturing / Machine tools
Materials / Metals & alloys
# Record card
103
Description

The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.

Thematic areas
Materials / Ceramic materials
Materials / Optical materials
Health & Biotech / Medical imaging & equipment
Additive and advanced industrial manufacturing
# Record card
8
Description

Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.

Thematic areas
ICT & Electronics / Laser technologies
Bioeconomy
Materials / Photo-active & graphene-based materials
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Health & Biotech / Biosensors
# Record card
81
Description

IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.

Thematic areas
ICT & Electronics / Smart cities and Communities
Health & Biotech / Smart Devices for Health and Wellness
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
Automotive transport and logistics / Vehicles
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Additive and advanced industrial manufacturing / Robotics
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers
# Record card
99
Description

This form describes a programmable, autonomous and stand-alone imaging system for the acquisition and processing of images containing subjects whose size is larger than 1cm (e.g. gelatinous zooplankton, fishes, litter, manufacts), form the seafloor or along the water column, in shallow or deep waters. It is capable to recognize and classify the image content through pattern recognition algorithms that combine computer vision and artificial intelligence methodologies.

Thematic areas
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Internet of Things
ICT & Electronics / Artificial Intelligence
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Information processing, information system, workflow management
Aerospace and Earth Science / Oceanography
Agrifood / Marine resources
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Tourism, social sciences and cultural heritage / Education & learning
Tourism, social sciences and cultural heritage / Entertainment
Tourism, social sciences and cultural heritage / Socio-economic models
Tourism, social sciences and cultural heritage / Multimedia technologies
# Record card
134
Description

The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.

Thematic areas
Aerospace and Earth Science
Energy and environmental sustainability
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials
# Record card
93
Description

Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for  the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Materials / Processes of production & treatment of materials
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Agrifood / Marine resources
Agrifood / Nutrition & health
Health & Biotech / Nanomedicine
Health & Biotech / Development of new drugs
Chemicals & Physics / Subtainable substances and green chemistry
Health & Biotech / Regenerative Medicine
# Record card
30
Description

X-ray imaging techniques can work in i) "full-field mode" in which the object to study (or part of it) is completely illuminated by the X-ray beam; ii) "scanning mode" in which an X-ray beam, focused through an opportune optics, illuminates in succession contiguous areas of the sample under examination, and the transmitted wave is measured by a detector placed at a proper distance from it. One of these X-ray scanning microscopes is available at the facility (X-ray MicroImaging, XMIL@b) of the Institute of Crystallography (CNR-Bari).

Thematic areas
Chemicals & Physics / Man made fibres
Additive and advanced industrial manufacturing / Packaging
Materials
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging