Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 16 - 30 of 30

# Record card
74
Description

The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.

Thematic areas
Materials / Properties of materials, corrosion, degradation
Additive and advanced industrial manufacturing / Packaging
Energy and environmental sustainability / Renewable sources
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Subtainable substances and green chemistry
Energy and environmental sustainability / Waste management
Bioeconomy
# Record card
135
Description

Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.

Thematic areas
Health & Biotech
Health & Biotech / Bio-medicals
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
ICT & Electronics
ICT & Electronics / Robotics and control systems
ICT & Electronics / Artificial Intelligence
# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
258
Description

The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.

Thematic areas
Chemicals & Physics
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Health & Biotech
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
Health & Biotech / Medical Device
Energy and environmental sustainability
Energy and environmental sustainability / Environmental engineering/technologies
Chemicals & Physics / Inorganic substances
Energy and environmental sustainability / Sensory
Chemicals & Physics / Organic substances
Chemicals & Physics / Colours & dyes
Materials
# Record card
140
Description

The technology refers to an innovative plasma (ionized gas) source operating at atmospheric pressure and low electric power levels. A cold plasma is produced, characterized by an ion temperature significantly lower than the electron temperature. Partial ionization of a Helium flux is induced by a time-varying electric field in between two parallel grids, both perpendicular to the flux itself.

Thematic areas
Health & Biotech
Health & Biotech / Bio-medicals
Health & Biotech / Care, Hygiene, Cosmetics
Health & Biotech / New therapies
Health & Biotech / Medical Device
Chemicals & Physics
Chemicals & Physics / Cold Plasmas
# Record card
260
Description
Thematic areas
Agrifood
Agrifood / Nutrition & health
Agrifood / Food quality & safety
Health & Biotech
Health & Biotech / Development of new drugs
Additive and advanced industrial manufacturing
Health & Biotech / Biosensors
Health & Biotech / Bio-medicals
Chemicals & Physics
Additive and advanced industrial manufacturing / Packaging
Chemicals & Physics / Agro chemicals
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Health & Biotech / Diagnostic kits
Chemicals & Physics / Colours & dyes
Chemicals & Physics / Plastics & rubber
Chemicals & Physics / Detergents & cleaning technologies
# Record card
50
Description

This technology describe the synthesis of cross-linked polymeric materials in the form of macroporous gels based on poly (2-hydroxyethyl methacrylate), capable of sequestering the anticoagulant heparin from aqueous solutions, physiological solutions and biological fluids. They are morphologically elastic and mechanically stable materials, and show high specificity and selectivity for heparin as demonstrated by the negligible adsorption of specific blood proteins such as antithrombin III, albumin and total proteins.

Thematic areas
Chemicals & Physics / Separation technologies
Health & Biotech / Medical Device
Materials / Plastics, polymers
# Record card
38
Description

The Q-PLL is a nonlinear circuit which can maintain a locked state when forced by two incommensurate frequencies.

The locked state is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.

In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi- periodic input and is closely related to the pitch perception of complex sound in humans.

Thematic areas
Materials / Properties of materials, corrosion, degradation
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Robotics and control systems
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / IT and Telematics applications
ICT & Electronics / Multimedia
ICT & Electronics / Telecommunications
# Record card
103
Description

The proposing team that works at CNR ISTEC has recently patented a technology for the production of the Smart Polycrystals (SP), i.e. transparent YAG-based ceramic polycrystals (Y3Al5O12) variably doped with rare earths ions and transition metals ions. The SPs solve the problem of the reduction of the efficiency in the solid state laser systems caused by the inhomogeneous heating of the single crystals during the emission process.

Thematic areas
Materials / Ceramic materials
Materials / Optical materials
Health & Biotech / Medical imaging & equipment
Additive and advanced industrial manufacturing
# Record card
8
Description

Polymer development is approaching to a new stage of advancement in which new functionalities especially in combination with conductive polymers and nanomaterials are more effective. In this context the study of new composites is the key to enable the development of disruptive technologies as additive manufacturing. Increasing electrical conductivity open the way to a new class of objects to be prototyped rapidly at low cost with a high level of customization.

Thematic areas
ICT & Electronics / Laser technologies
Bioeconomy
Materials / Photo-active & graphene-based materials
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Health & Biotech / Biosensors
# Record card
41
Description

The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Medical Device
Materials / Processes of production & treatment of materials
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
# Record card
82
Description

We present a new concept of ultra-compact, configurable and implantable brain computer interface (BCI). The device can be applied to monitor or stimulate, with high temporal and spatial accuracy, neural activity of the brain. It allows implementation of closed-loop algorithms in real time applications. The system can be also used in vitro to monitor or induce cell growth or as tDCS tool. The system can be customized (microelectrodes materials and shapes) to guarantee the best solution for the specific application.

Thematic areas
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Diagnostic kits
# Record card
79
Description

Our team can develop low-cost ultra-flexible sensors integrated on plastic substrate for volatile organic compounds (VOCs) and gas detection. These devices combine scalable fabrication technologies, implementing active materials such as nanostructured metal oxides or stack of nanostructures decorated with metal nanoparticles, thus enabling a high sensitivity (in the range of hundreds of ppb). These devices can be applied to numerous industrial and commercial sectors and they can be embedded in systems that are more sophisticated.

Thematic areas
Materials / Semiconductors and Superconductors
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Agrifood / Agriculture
Health & Biotech / Nanomedicine
Health & Biotech / Medical Device
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Health & Biotech / Biosensors
Energy and environmental sustainability / Sensory
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Organic substances
ICT & Electronics / Electronics and microelectronics
Materials / Plastics, polymers
# Record card
134
Description

The working principle of VTTJ is extremely simple. Two parts (at least one with tube shape) are screwed one into the other with a mechanical interference that creates a metallic seal. One part presents a cylindrical slot, the other presents a conical ring, whose diameter is slightly larger than the one of the cylindrical slot. When the two parts are screwed together, a plastic deformation occurs in the mechanical interference region.

Thematic areas
Aerospace and Earth Science
Energy and environmental sustainability
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials
# Record card
30
Description

X-ray imaging techniques can work in i) "full-field mode" in which the object to study (or part of it) is completely illuminated by the X-ray beam; ii) "scanning mode" in which an X-ray beam, focused through an opportune optics, illuminates in succession contiguous areas of the sample under examination, and the transmitted wave is measured by a detector placed at a proper distance from it. One of these X-ray scanning microscopes is available at the facility (X-ray MicroImaging, XMIL@b) of the Institute of Crystallography (CNR-Bari).

Thematic areas
Chemicals & Physics / Man made fibres
Additive and advanced industrial manufacturing / Packaging
Materials
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging