The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 32
The present invention relates to the biomedical sector of the treatment of lung diseases and related symptoms. In particular, the present invention provides compositions and methods based on the use of selected polymeric biomaterials, in combination with stem cells and/or their secretome, capable of synergistically improving the development, regeneration and repair of chronic lung injuries and related symptoms.
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
The technology has been developed over the past 25 years, implementing new innovative components during time. The methodology provides a set of 2D acoustic images in different frequency intervals, for revealing the structural damage (detachments, delaminations, structural weakening) in multi-layer structures and artworks (mural paintings, frescoes, ceramic panels, panel paintings). Recently, interesting results have been obtained in studies of the water related deterioration effects on antique masonry structures.
Digital Eye is an innovative, rapid and high-precision intelligent computer vision system for the non-destructive and contactless evaluation of quality and shelf-life of whole or fresh-cut fruit and vegetables. It integrates advanced vision and artificial intelligence technologies to estimate parameters useful to evaluate the quality of fruit and vegetables, during both the harvesting phase and the cold chain.
Molecular doping (MD) is a doping method based on the use of liquid solutions. The dopant precursor is in liquid form and the material to be doped is immersed in the solution. During the immersion process, the molecule containing the dopant atom is deposited on the surface of the material forming a self-assembled monolayer, that is, ordered and compact. Through a subsequent heat treatment, the molecule decomposes and the dopant diffuses.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
The current technology allows to achieve new macroporous superadsorbent polymeric materials able to remove toxic contaminants from water and soil showing excellent sequestering properties against arsenate As (V), chromate Cr (VI) and Borate B (III) ions. The material is obtained by radical cryopolymerization of the monomer 4'-vinyl-benzyl-N-methyl-D-glucamine and / or its mixtures with hydroxyethyl-methacrylate (HEMA).
The herein described technology aims at the development of a platform of injectable hydrogels for application as drug carriers for localized delivery or in the regenerative medicine field. The use of ad-hoc synthesized poly(ether urethane)s (PEUs) as hydrogel forming materials is a common property which characterizes all the systems belonging to this platform.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
The invention is about the development of a device and its methodology for measuring the active and reactive sound intensity from the impedance computation. The active intensity is calculated directly in the frequency domain multiplying the complex impedance and power spectrum of the air particle velocity. A second line of post-processing is applied to obtain the overall complex sound intensity.