Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 17
The compact-GC platform is a MEMS-based analytical module for the purge&trap pre-concentration and (gas)-chromatographic separation of a sample. The two analytical MEMS (pre-concentrator and GC column) are interconnected by means of a MEMS microfluidic manifold. The microfluidic manifold interconnects the analytical MEMS, but it also acts as injector through the integrated micro-valves.
CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
We propose an optical technique for the fast check of the presence, on the exposed surfaces of persons and objects, of explosives and their precursors, or drugs, or in general materials which are not allowed in restricted environments: airports, courts, places of worship, etc. The technique yields bi-dimensional pictures, with exposure time of < 1 sec, reporting the target substances, and their locations and quantities. The technique already provided laboratory preliminary results, to be completed, and fully validated for sensitivity and selectivity.
We propose a portable chemical analysis system capable of identifying chemical substances at trace concentrations (sub-ppm), even in case of a complex matrix of interfering species.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
This invention comprises an interrogation and readout differential method for chemical sensors based on Surface Plasmon Resonances (SPR). The integration of the SPR sensing unit (chip or other), as intermediate reflecting element of a Fabry-Perot (FP) optical resonator, is the starting point for the application of this method.
We offer integrated tools for the acquisition, analysis, modelling and optimization of visitor flows in museums characterized by frequent congestion and/or complex geometries. Our intervention is divided into 4 phases:
1) Data acquisition related to the paths followed by visitors in the museum, number of visitors in the rooms, time of permanence, ... The acquisition is performed via a specific IoT system, smartphone app or manual counting.
Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and its design and optimization to be oriented.
The technology concerns planar optical antennas composed of thin metal films and dielectric materials for the efficient direction of the light emitted by light sources, such as fluorescent molecules and bio-markers. They consist of a reflector layer, adjacent to the substrate, and a director, semi-reflective, between which the emitter is positioned, integrated into a homogeneous dielectric layer.
Electrochromism is an optoelectronic characteristic of particular interest because it can be exploited in the creation of technologies such as smart windows (Smart Windows) to promote energy efficiency, automotive, sensor or visualization devices. Electrochromic materials change their optoelectronic characteristics, showing different colors depending on the applied electric field.
IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.