A biosensor based on magnetic microspheres functionalized with a DNA-aptamer was developed for the specific biomonitoring of biological contaminants (mycotoxins) in urine.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 40
Leishmaniasis is a zoonosis caused by the protozoan of the genus Leishmania, which affects both humans and animals through a phlebotomist. After malaria and lymphatic filariasis, leishmaniasis is the third most common disease on a global scale. Leishmania infantum is the species spread in the European continent and the Mediterranean basin. In Italy, from the hilly coastal areas and major islands, the infection has spread to many pre-Alpine areas and northern Italy.
This innovative technology involves the use of a high-affinity, highly specific antibody that targets extracellular domains of connexin hemichannels (Cx26, Cx30, and Cx32). The antibody has been designed to reduce or inhibit the growth of brain tumors, particularly glioblastoma (GBM), and to alleviate the associated epilepsy. By blocking connexin hemichannels, the antibody interferes with pathological ATP release and other signaling mechanisms that contribute to tumor progression and neural hyperexcitability.
The development of genome editing tools has revolutionized the way we think and deal with genetics. The use of Cas9 or its variants allows modifications of specific sites in the human genome by inducing deletions and insertions in a more or less controlled way. In recent years, a new class of tools for genome editing has emerged: the base editors (BE), which result from the fusion of a modified Cas9, which serves to direct the BE to the target, and an active deaminase acting on the DNA, which mediates the C> T or A> G editing.
Aptamers, short structured single-stranded oligonucleotides binding at high affinity to a given target protein, are selected from large combinatorial libraries through repeated cycles of incubation of the library with the target, recovery and amplification of target-bound oligonucleotides (SELEX technology, Systematic Evolution of Ligands by EXponential enrichment). SELEX can be applied to select aptamers against a known target protein or against a specific cell phenotype, without any prior knowledge of the specific target, leading to new biomarkers discovery.
The technology we participate to develop, called "Zinc-Finger Artificial Transcription Factors (ZF-ATFs)", allows to design, realize and select artificial genes coding for proteins capable of recognizing and binding "potentially" any DNA sequence. We used ZF-ATF technology to reprogram the expression of "beneficial" genes capable of efficiently counteracting the negative effect of mutated genes related to rare diseases.
Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
The present invention relates to the biomedical sector of the treatment of lung diseases and related symptoms. In particular, the present invention provides compositions and methods based on the use of selected polymeric biomaterials, in combination with stem cells and/or their secretome, capable of synergistically improving the development, regeneration and repair of chronic lung injuries and related symptoms.
C-ImmSim is one of the most advanced computational models of the immune system. The software resorts to (bit or amino acid) strings to represent the “binding site” of cells and molecules. C-ImmSim is an agent-based model that includes the major classes of immune cells of the lymphoid lineage and some of the myeloid lineage. Helper T cells are divided into five phenotypes. B cells and plasma B are also divided into two phenotypes.
The dramatic global health emergency due to the SARS-CoV-2 pandemic requires new diagnostic devices capable of identifying the presence of virus particles in patient biological samples. In this direction, the development of an innovative low-cost test, which provides the result within a few minutes, which is reproducible and which can reveal the direct presence of even a few viral particles, would be of fundamental importance for the monitoring and containment of the pandemic.
The assessment of bio-humoral markers beyond clinical evaluation would allow a more comprehensive pheno/endotyping of patients affected by chronic inflammatory diseases. Therapy personalization would require a profile of the mediators that are relevant in the disease pathogenesis and that well correlate with prognosis. Currently, the measurement of multiple biomarkers is not included in patient evaluation because it has high costs, requires centralized laboratories, experienced personnel and bulky equipment and is time-consuming.
The proposed technology is based on the micro-fabrication of electrodes in order to generate surface acoustic waves (SAW) with well-defined frequencies, on piezoelectric substrates. The operating principle of a surface acoustic wave sensor is linked to the variation of the characteristics of the acoustic wave that propagates on the device (e.g. wave velocity on the substrate, etc.) caused by the interaction with the environment (e.g. interaction of an analyte on the surface of the device, deformation of the substrate, etc.).
Digital Eye is an innovative, rapid and high-precision intelligent computer vision system for the non-destructive and contactless evaluation of quality and shelf-life of whole or fresh-cut fruit and vegetables. It integrates advanced vision and artificial intelligence technologies to estimate parameters useful to evaluate the quality of fruit and vegetables, during both the harvesting phase and the cold chain.
Silicon nanowires (SiNWs) are 1D structures with diameter ranging from few tens to hundreds of nanometers and length varying from few tens of nanometers to millimiters. SiNWs are fabricated in the labs of the IMM-CNR, Rome Unit, by using bottom-up technologies such as plasma enhanced chemical vapor deposition (PECVD) at low growth temperature ((≤350°C), allowing the use of plastic and glassy substrates. Their electrical properties can be tuned by controlling the p/n doping during the growth.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.