Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 6 of 6

# Record card
89
Description

Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.

Thematic areas
Aerospace and Earth Science / Space sciences
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Propulsion
Automotive transport and logistics / Transport infrastructures
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Man made fibres
Chemicals & Physics / Special chemicals
Chemicals & Physics / Subtainable substances and green chemistry
Materials / Building materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Properties of materials, corrosion, degradation
Materials / Semiconductors and Superconductors
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Rational use of energy
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Energy and environmental sustainability / Cleaner use of fossil fuels
Energy and environmental sustainability / Nuclear engineering
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Building materials
Health & Biotech / Bio-medicals
# Record card
45
Description

CNR-ISTEC develops geopolymer composites for thermostructural applications, such as: self-supporting cavities; thermal and acoustic insulation; thermal and fire barriers; high temperature coatings and damping; molds and cores for foundry; foams and refractory linings. Geopolymers are chemically bonded materials at T <300 ° C. Being inorganic polymers without water in the structure, they tolerate high temperatures: they are incombustible, do not emit gas or fumes and do not explode.

Thematic areas
Materials / Building materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Propulsion
Aerospace and Earth Science / Aeronautical technologies and avionics
# Record card
56
Description

Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.

Thematic areas
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Materials / Composite and hybrid materials
Materials / Optical materials
# Record card
17
Description

The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.

Thematic areas
ICT & Electronics / Laser technologies
ICT & Electronics / Sensor/multi-sensor technology, instrumentation
ICT & Electronics / Optics & Acoustic
ICT & Electronics / Smart cities and Communities
ICT & Electronics / Robotics and control systems
ICT & Electronics / Internet of Things
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Robotics
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Materials / Semiconductors and Superconductors
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / Diagnostic kits
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Agrifood / Food quality & safety
Automotive transport and logistics
Chemicals & Physics / Atomic and molecular spectroscopy
Chemicals & Physics / Imaging & image processing
Chemicals & Physics / Electron microscopy
Chemicals & Physics / Micro and nanotechnology related to physical, chemical and exact sciences
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Pollution treatment (air, soil, water)
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Ecology & Biodiversity
Energy and environmental sustainability / Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering
Energy and environmental sustainability / Sensory
Energy and environmental sustainability / Simulation
Energy and environmental sustainability / Wearable technologies
ICT & Electronics / Electronics and microelectronics
ICT & Electronics / Information processing, information system, workflow management
ICT & Electronics / Microwaves and RF
# Record card
158
Description

Solid State Nuclear Magnetic Resonance spectroscopy (SSNMR) is today one of the most powerful techniques for characterizing solid and soft materials and systems. This spectroscopy allows the detailed characterization of structural and dynamic properties over large spatial (0.1-100 nm) and time (102-10-11 s) scales. Accessing these properties allows a deep knowledge of a material to be obtained and  its design and optimization to be oriented.

Thematic areas
ICT & Electronics
ICT & Electronics / Optoacustic sensors, Optoelectronic devices
ICT & Electronics / Nanotechnologies related to electronics and microelectronics
Additive and advanced industrial manufacturing
Additive and advanced industrial manufacturing / Packaging
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Factory of the Future
Materials
Materials / Wood products
Health & Biotech
Health & Biotech / Nanomedicine
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Development of new drugs
Health & Biotech / Regenerative Medicine
Health & Biotech / Care, Hygiene, Cosmetics
Tourism, social sciences and cultural heritage
Tourism, social sciences and cultural heritage / Technologies for preservation of cultural heritage
Aerospace and Earth Science
Aerospace and Earth Science / Aeronautical technologies and avionics
Tourism, social sciences and cultural heritage / Multimedia technologies
Tourism, social sciences and cultural heritage / Archaeology
Agrifood
Agrifood / Agriculture
Agrifood / Food quality & safety
Automotive transport and logistics
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Innovative fuels
Chemicals & Physics
Energy and environmental sustainability
# Record card
46
Description

Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.

Thematic areas
Materials / Processes of production & treatment of materials
Materials / Building materials
Chemicals & Physics / Inorganic substances
Energy and environmental sustainability / Building materials
Materials / Ceramic materials
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Chemicals & Physics / Subtainable substances and green chemistry
Aerospace and Earth Science / Aeronautical technologies and avionics
Energy and environmental sustainability / Waste management