Extracellular vesicles produced by teratocarcinoma cells were isolated and characterized. Functional assays on glioblastoma (GBM) cell cultures showed the inhibitory effect of these vesicles on tumor cell migration, without inducing undesirable effects such as increased cell proliferation or chemotherapy resistance.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 13 of 13
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. In particular, in the Biotech sector an increasingly deeper penetration of new treatment models and biological drugs based on cellular, subcellular and vesicle therapies is expected. The patent is based on the production of Myelin-based nanoVesicles (MyVes) produced by microfluidics, starting from myelin extracted from brain tissue. These vesicles find two major fields of applications as potential drugs or as supplements/nutraceuticals.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
With the advent of senolytic agents, capable of selectively removing senescent cells in “aged” tissues, the perception of age-associated diseases has changed from being an inevitable to a preventable phenomenon of human life. The present invention is part of this research topic with the identification of molecules with potential pro-apoptotic activity, specifically with senolytic activity. The computational approach adopted, is based on combining ligand-base and structure-based virtual screening.
Currently, liposomes (artificially synthesised vesicles) are widely used as carriers for a variety of molecules in the cosmetic and pharmaceutical industries. In the clinical applications, for instance, they are employed to encapsulate a range of substances, such as antibiotics, proteins, genetic material, vitamins and anti-cancer drugs.
The invention is a synthetic method to prepare colloidal nanomaterials of V-VI-VII semiconductors that do not contain toxic elements. This is the first method for the synthesis of mixed anion nanomaterials without toxic elements at large, which permitted to obtain, among others, bismuth chalcohalide nanocrystals that are arguably considered as one of main candidates to be the next big thing for light energy conversion.
The Q-PLL is an innovative nonlinear circuit which is able to synchronize to a signal comprising two or more incommensurate frequencies (forcing).
When the forcing contains two prevailing frequencies the locking response is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency is closely related to the pitch perception of complex sound in humans.
The technology is intended to face the main problems of transmucosal dental implants, such as peri-implant mucositis, peri-implantitis and epithelial downgrowth. The strategy foresees the development of a surface able to favor soft tissues growth (gum sealing), limit at the implant collar these tissues, reduce bacterial adhesion and eventually have an antibacterial action.
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.
We present a technology for the multiscale isolation (analytical-laboratory-production) of Extracellular Vesicles (VE), which overcomes the limitations of the currently available methods. As opposed to traditional "affinity-based" systems that exploit antibodies, our technology represents a radical paradigm shift in the development of affinity probes for vesicles, i.e.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.