Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 15
The present invention relates to the biomedical sector of the treatment of lung diseases and related symptoms. In particular, the present invention provides compositions and methods based on the use of selected polymeric biomaterials, in combination with stem cells and/or their secretome, capable of synergistically improving the development, regeneration and repair of chronic lung injuries and related symptoms.
The insertion of executable programs within QR codes is a new enabling technology for many application contexts in everyday life. Every time Internet access is unavailable, QR code usage is limited to reading the data it contains without any possibility of interaction.
NIRS is a non-invasive technique for the human brain cortex imaging based on the measurement of the NIR light emitted by suitable optical sources placed on the patient head and backdiffused to the surface after passing through the brain tissues. NIRS monitors the percentage of oxygenated and reduced hemoglobin in the blood, and it allows the real time functional imaging of the brain cortex also in tomographic mode (Diffuse Optical Tomography - DOT).
INCIPIT technology allowed the implementation of a multifunctional, micro-structured and electroconductive therapeutic product to treat patients with myocardial infarction, the leading cause of death for cardiovascular disease. Current therapies (drugs, bypass, angioplasty) do not restore the functionality of damaged myocardial tissue.
The herein described technology aims at the development of a platform of injectable hydrogels for application as drug carriers for localized delivery or in the regenerative medicine field. The use of ad-hoc synthesized poly(ether urethane)s (PEUs) as hydrogel forming materials is a common property which characterizes all the systems belonging to this platform.
An innovative approach for the treatment of diabetic and venous ulcers, characterized by a difficult healing process and therefore at potential risk of infection and therefore of hospitalization and amputation of the limb, is represented by the local administration of "bioactive" factors through the use of synthetic and/or biological matrices that allow a gradual and controlled release in order to obtain a better and faster healing.
Portable robotic device for bilateral neuromotor rehabilitation. An appropriate mechanical structure and a series of interchangeable accessories suitably designed allow the execution of various motor gestures of the upper limbs, involving different articulations and muscles. The possibility of being used with both limbs contributes to the recovery of motor coordination and facilitates the mechanism of brain plasticity. Some rotary axes the device is equipped with are motorized and sensorized.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
The development of new materials with near-infrared emission (NIR, 700 – 1000 nm) represent an important target in the technological progress of innovative active components for OLED devices (including flexible ones), surveillance systems, autonomous driving, night vision sensors, fiber optic telecommunications and medical systems. In all these fields it still lacks a commercial NIR-OLED technology.
The environment as well as the food production provide a number of both natural and synthetic compounds whose effects on human being as an organism have not yet been determined nor investigated.
This technology describe the synthesis of cross-linked polymeric materials in the form of macroporous gels based on poly (2-hydroxyethyl methacrylate), capable of sequestering the anticoagulant heparin from aqueous solutions, physiological solutions and biological fluids. They are morphologically elastic and mechanically stable materials, and show high specificity and selectivity for heparin as demonstrated by the negligible adsorption of specific blood proteins such as antithrombin III, albumin and total proteins.
The Q-PLL is an innovative nonlinear circuit which is able to synchronize to a signal comprising two or more incommensurate frequencies (forcing).
When the forcing contains two prevailing frequencies the locking response is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency is closely related to the pitch perception of complex sound in humans.
This technology is based on an algorithm able to provide the probability of being asthmatic with high accuracy. This probability is based on the evaluation of respiratory function and, specifically, of forced expiratory vital capacity in the first second (FEV1), in resting conditions, and 20 minutes after administration of a bronchodilator drug.
IMM has developed tactile sensors for the detection of objects and surface and for the handling of objects with humanoid robots (e-skin). These devices can be integrated on ultra-flexible and high conformable substrates and they can be used for multiple applications: 1) for a correct interaction with objects distributed in complex environment; 2) for a safe short-range interaction between humanoid robot and humans; 3) for fabricating smart wearables for the detection of biometric parameters (e.g. heartbeat); 4) for remotely control rovers with wearable gadgets.