The Proof-of-Concept A.L.I.C.E. or "Actuators based on Light sensitive CompositE" aims at the development of innovative materials through 3D/4D printing processes and uses them as actuators in the fields of photovoltaics, concentrated solar power, thermodynamic solar, and other applications such as optical deflectors, optical microvalves, and optical switches.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 15 of 19
B-ME developed the first thermoplastic composite electrode film based on bio-derived and biodegradable polyesters and carbon nano-fibers. It is metal-free, highly electrically conductive and possess good thermo-mechanical properties, a challenging combination of three features in a single product. This is the first-of-its-kind product, as, to the best of our knowledge, no thermoplastic biobased electrode film has been effectively produced and used so far.
Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
The final technology will add polarimetric capability to imaging cameras in the NUV/optical, providing simultaneous measurements of the different polarization states of the light. This will be obtained by the development of an innovative coating based on nanostructured emissive materials sensitive to the polarization of the incident light. A double layer film of two organic systems will be coupled to image detectors so that the two polarization components of the incoming light are converted into two different colors.
The technology has been developed over the past 25 years, implementing new innovative components during time. The methodology provides a set of 2D acoustic images in different frequency intervals, for revealing the structural damage (detachments, delaminations, structural weakening) in multi-layer structures and artworks (mural paintings, frescoes, ceramic panels, panel paintings). Recently, interesting results have been obtained in studies of the water related deterioration effects on antique masonry structures.
The constant demand for more powerful and energy-efficient electronic devices than existing ones is challenging scientists and companies to develop innovative solutions that can address such primary technological needs. Based on a recent scientific discovery made by our team we have developed a technology for superfast and extremely scalable logic and computing circuits with minimal energy losses, which has the potential to become the leading technology in the future world of largescale computing and telecommunication infrastructures.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
Uniform coverage with porous layers over extended surfaces is beneficial for many purposes. Depending on the nature/composition, thickness and interfaces of the layer, this kind of special coverage can assure pivotal properties such as transparency, bendability, high surface reactivity, intermixing capability. In the long list of desired porous materials, transparent oxides find application in the fields of Photovoltaics, Sensing, Photocatalysis, Water Purification and Splitting, Lithium Batteries and many more.
Large-scale synthesis of inorganic colloidal TiO2@WO3-x nanoheterostructures based on multicomponent semiconductor (TiO2)-plasmonic (WO3-x) heterojunctions.
Lifeshell is an anti-seismic furniture construction concept, which can be used for making wardrobes, tables, desktops, beds. It’s made by timber based panels: highly resistant and flexible, relatively lightweight and inexpensive. Lifeshell benefits from the natural wood elasticity and from smart connections for dissipating the great impact energies occurring during an earthquake. Lifeshell has been designed for resisting partial building collapses, and to provide a safe shell where inhabitants can find refuge.
Mirrors for space applications, besides featuring suitable optical properties, should be light, resistant to mechanical stresses, and unsensitive to light-shadow thermal cycling. The standard optical materials easily fulfill optical and thermal requirements, but are fragile, and the mirrors must be thick (typically 1/6 of the diameter). For this reason they are heavy, and the only available solution is to lighten them, by removing material from the back side, still preserving the necessary mechanical robustness and optical quality.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
The procedure enables the fabrication of nanocomposite membranes filled with suitable amounts of exfoliated bidimensional crystals. These are obtained with an advanced wet-jet milling technique, which provides desired thickness and lateral size of nanofillers through the pulverization and colloidal homogenization of bulk nanomaterials. The bidimensional crystals are dispersed in fluids and suitably delivered inside polymeric matrixes exhibiting a singular morphology.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.