The technology, developed by CNR-ICB, is based on an innovative bioprocess called "Caphnophilic (CO2-requiring) Lactic Fermentation (CLF)”, developed in the hyperthermophilic bacterium Thermotoga neapolitana (EP patent: EP2948556B1), which allows the production of "green" hydrogen and capture and valorization of CO2 in L -lactic acid (98% e.e.).
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 10 of 10
Digital Eye is an innovative, rapid and high-precision intelligent computer vision system for the non-destructive and contactless evaluation of quality and shelf-life of whole or fresh-cut fruit and vegetables. It integrates advanced vision and artificial intelligence technologies to estimate parameters useful to evaluate the quality of fruit and vegetables, during both the harvesting phase and the cold chain.
Geopolymers are synthetic inorganic polymers obtained from an aluminosilicate powder and an aqueous solution of alkaline hydroxides or silicates. The material is mesoporous and a multidimensional and functional porosity can be generated through the addition of fillers or the use of specific techniques.
The mix-design of the mixture, pure or composite, allows to change the chemical-physical properties of the final material, also thanks to the nucleation of zeolitic phases. Geopolymers also possess ion exchange and electrostatic interaction capabilities.
This technology concerns the development of new eco-sustainable UV physical/mineral filters with the aim of offering important innovations per the cosmetic sector. This, encouraged by European initiatives in the Green-Deal context, is constantly looking for new components with improved protection of the human health and the environment.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
NANOINCICLO is a technology based on the use of nanostructured cyclodextrins (CDs) for the targeted delivery of drugs such as anticancer drugs, photodynamic drugs, anti-inflammatories, antivirals, antibacterials, nutraceuticals and metals with therapeutic and diagnostic properties. Successful CDs for the proposed technology are FDA-approved or in advanced pre-clinical investigational stage and include natural and functionalized, polymeric, and amphiphilic monomeric CDs.
The environment as well as the food production provide a number of both natural and synthetic compounds whose effects on human being as an organism have not yet been determined nor investigated.
The proposed technology is about the development of an innovative sunscreen obtained from cod fish bones, according to the principles of the circular economy. The sunscreen is a reddish powder, which is constituted of hydroxyapatite (a calcium phosphate main component of human bones) modified with iron. It is prepared with a simple and easily scalable process (treatment of the bones in Fe solution and successively at T = 700 oC) and could be adapted for bones of other fishes.
Electrochromism is an optoelectronic characteristic of particular interest because it can be exploited in the creation of technologies such as smart windows (Smart Windows) to promote energy efficiency, automotive, sensor or visualization devices. Electrochromic materials change their optoelectronic characteristics, showing different colors depending on the applied electric field.
Geopolymers belong to the class of chemically bonded ceramics: they are synthesized at low temperatures and are eco-friendly, as besides the low consolidation temperature required by the process they can be produced from secondary raw materials and industrial waste of various kinds, thus reducing the energy demand and the environmental impact of the entire production cycle. Materials such as fly ash, steel mill slag, biomass ash, sludge and silt, extractive residues, mineral and ceramic powders, organic or inorganic waste fibers, plastics, etc.