Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 12 of 12
Our proposal consists in a quantum sensor based on a superconduc:ng resonator. The working principle is based on the exponential growth of the susceptibility in proximity of a critical phase transition, where the system quickly switches from the vacuum state to a strong emission of easily detectable microwave signals, in response to extremely weak electromagnetic signals. The sensor can detect microwave and radiowave signals, with single-photon resolu:on.
The technology has been developed over the past 25 years, implementing new innovative components during time. The methodology provides a set of 2D acoustic images in different frequency intervals, for revealing the structural damage (detachments, delaminations, structural weakening) in multi-layer structures and artworks (mural paintings, frescoes, ceramic panels, panel paintings). Recently, interesting results have been obtained in studies of the water related deterioration effects on antique masonry structures.
VisLab laboratory of IMM possesses a latest generation Raman micro-spectroscope equipped for vibrational measurements with high spatial and spectral resolution, at controlled temperature and in fast-imaging. The apparatus can be used to collect information and chemico-physical maps without the need for sample preparation and alteration, therefore for non-destructive studies and in operating conditions.
The invention consists of a method and apparatus for the delivery at low pressure (equal to or less than 10-7 Torr) of monoatomic fluorine for reaction with surfaces in an ultra-clean environment. Thanks to the low pressure values involved in the proposed method, the risks associated with the use of fluorine are reduced to a minimum.
The object of the technology is the development of a transferable methodology from the laboratory scale to the pilot scale to be validated in the industrial setting for the treatment of basic waste of natural polymers of agro-food or manufacturing industry.
The NanoMicroFab infrastructure, support companies operating in the field of micro and nanoelectronics through the supply of materials, development of processes, design, fabrication and characterization of materials and devices. NanoMicroFab makes use of existing CNR facilities of the Institute of Microelectronics and Microsystems, the Institute of Photonics and Nanotechnologies and the Institute for the Structure of Matter and provides: • a complete line of development of devices based on wide band gap semiconductors.
The proposed technology offers a novel and versatile method for detecting cracks in insulating materials of electrically polarized metal devices, i.e. dielectric coatings on metals, especially in low-pressure gas environments. It uses an ionized plasma that interacts uniformly with the insulating surface, allowing to detect defects invisible to the naked eye. The detection occurs in a single test without changing the environmental conditions and without risking harmful electrical discharges.
The metasurface optomechanical modulator is a device designed to modulate the amplitude, phase and polarization of a beam of electromagnetic radiation, independently, or simultaneously, according to prescribed paths in the parameter space (for example, as regards polarization, paths on the Poincaré sphere). The concept of our device can be applied to the entire spectrum of electromagnetic waves: from radio frequency, to microwaves (GHz), to millimeter waves (THz), to far and near infrared radiation, and to visible light.
The technology concerns planar optical antennas composed of thin metal films and dielectric materials for the efficient direction of the light emitted by light sources, such as fluorescent molecules and bio-markers. They consist of a reflector layer, adjacent to the substrate, and a director, semi-reflective, between which the emitter is positioned, integrated into a homogeneous dielectric layer.
The Q-PLL is an innovative nonlinear circuit which is able to synchronize to a signal comprising two or more incommensurate frequencies (forcing).
When the forcing contains two prevailing frequencies the locking response is a third frequency parametrically selected among those prescribed by the theory of three-frequency resonances in dynamical systems.
In particular, the locked frequency is closely related to the pitch perception of complex sound in humans.
The proposed device is a semi-transparent screen that allows simultaneous viewing of what is beyond the screen and the images projected onto its surface. It consists of two thin glass plates with reflective elements arranged as microlenses, embedded in a resin. The projector's light is reflected by the elements towards the user's eye, while external light passes through the transparent layers without distortion. The transparency and brightness of the screen can be adjusted by modifying the reflective elements.