This innovative technology involves the use of a high-affinity, highly specific antibody that targets extracellular domains of connexin hemichannels (Cx26, Cx30, and Cx32). The antibody has been designed to reduce or inhibit the growth of brain tumors, particularly glioblastoma (GBM), and to alleviate the associated epilepsy. By blocking connexin hemichannels, the antibody interferes with pathological ATP release and other signaling mechanisms that contribute to tumor progression and neural hyperexcitability.
Technologies
In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).
Displaying results 1 - 6 of 6
Extracellular vesicles produced by teratocarcinoma cells were isolated and characterized. Functional assays on glioblastoma (GBM) cell cultures showed the inhibitory effect of these vesicles on tumor cell migration, without inducing undesirable effects such as increased cell proliferation or chemotherapy resistance.
Therapeutic strategies targeting cell cycle in cancer have in general failed in the clinic since the drugs have lacked the therapeutic index required to achieve a robust response against cancer cells with little or no cytotoxic effect on normal cells. NEK6 kinase, which is implicated in cell cycle control, has recently emerged as an attractive target for the development of novel anticancer drugs with enhanced therapeutic index.
With the advent of senolytic agents, capable of selectively removing senescent cells in “aged” tissues, the perception of age-associated diseases has changed from being an inevitable to a preventable phenomenon of human life. The present invention is part of this research topic with the identification of molecules with potential pro-apoptotic activity, specifically with senolytic activity. The computational approach adopted, is based on combining ligand-base and structure-based virtual screening.
Our proposal focuses on innovative formulations containing metallic complexes and plant extracts for diabetes treatment. The formulations were tested in vitro on human adipocyte cell models, showing a strong hypoglycemic effect due to the synergistic action of the two components. The plant extracts, derived from waste biomass of the agri-food industry, possess high antioxidant activity and interesting nutraceutical properties, due to their composition rich in polyphenols.
Safe, efficient and specific nano-delivery systems are increasingly needed for precision and regenerative medicine and targeted therapies (e.g. anticancer and antimicrobial therapies), as well as for the cosmetic and nutraceutical sectors’ applications. Despite the appreciable success of synthetic nanovectors, like for example liposomes, their clinical and market application is hampered by some limitations: • large scale production, • low cost production • intrinsic toxicity • limited cellular uptake • limited consumer acceptance.