Technologies

In this section it is possible to view, also through targeted research, the technologies inserted in the PROMO-TT Database. For further information on the technologies and to contact the CNR Research Teams who developed them, it is necessary to contact the Project Manager (see the references at the bottom of each record card).

Displaying results 1 - 4 of 4

# Record card
12
Description

Current standard SPECTs, in order to achieve high resolutions, use a multi-pinholes technology that requires numerous data processing to limit the effects of image distortion. The proposed SSR-SPECT scanner, uses a parallel-hole collimator and therefore does not require numerical reprocessing of the data to obtain correct information on the images, while assuring spatial resolutions close to those of the pinholes through the acquisition of sequences of images shifted from one to another.

Thematic areas
Health & Biotech / Bio-medicals
Health & Biotech / Medical imaging & equipment
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
# Record card
80
Description

Time-correlated single photon counting (TCSPC) is regarded as the “gold-standard” method for fluorescence lifetime measurements. However, TCSPC requires using highly sensitive detectors, not suitable for measurements under bright light conditions, thereby making the use impractical in clinical settings. The invention described here solves this problem by synchronizing the fluorescence detection with an external light source.

Thematic areas
Health & Biotech / Smart Devices for Health and Wellness
Health & Biotech / Diagnostic, Medical imaging & advanced bioimaging
Health & Biotech / Medical Device
Health & Biotech / Biosensors
Health & Biotech / Bio-medicals
Health & Biotech / Medical imaging & equipment
Health & Biotech / Diagnostic kits
Health & Biotech / Bio-informatics
# Record card
89
Description

Nowadays, to properly design and develop advanced materials capable to preserve for long times their performance under aggressive environments such as power generation plants, renewables, nuclear reactors and electronics of new generation, transport on ground and on space, aeronautics, catalysis, biomedical implants, the optimization of metallurgical processes involved is crucial.

Thematic areas
Aerospace and Earth Science / Space sciences
Aerospace and Earth Science / Aeronautical technologies and avionics
Aerospace and Earth Science / Satellite technologies
Automotive transport and logistics / Vehicles
Automotive transport and logistics / Shipbuilding
Automotive transport and logistics / Propulsion
Automotive transport and logistics / Transport infrastructures
Additive and advanced industrial manufacturing / Additive manufacturing processes and materials
Additive and advanced industrial manufacturing / Vacuum/High vacuum technologies
Chemicals & Physics / Inorganic substances
Chemicals & Physics / Man made fibres
Chemicals & Physics / Special chemicals
Chemicals & Physics / Subtainable substances and green chemistry
Materials / Building materials
Materials / Ceramic materials
Materials / Composite and hybrid materials
Materials / Metals & alloys
Materials / Properties of materials, corrosion, degradation
Materials / Semiconductors and Superconductors
Energy and environmental sustainability / Renewable sources
Energy and environmental sustainability / Rational use of energy
Energy and environmental sustainability / Nuclear fission/nuclear fusion
Energy and environmental sustainability / Cleaner use of fossil fuels
Energy and environmental sustainability / Nuclear engineering
Energy and environmental sustainability / Safety and security
Energy and environmental sustainability / Environmental engineering/technologies
Energy and environmental sustainability / Building materials
Health & Biotech / Bio-medicals
# Record card
101
Description

The herein described technology aims at the development of a platform of injectable hydrogels for application as drug carriers for localized delivery or in the regenerative medicine field. The use of ad-hoc synthesized poly(ether urethane)s (PEUs) as hydrogel forming materials is a common property which characterizes all the systems belonging to this platform.

Thematic areas
Health & Biotech / Micro and nanotechnology related to biological sciences
Health & Biotech / Bio-medicals
Health & Biotech / New therapies
Health & Biotech / Nanomedicine
Health & Biotech / Medical Device
Health & Biotech / Regenerative Medicine
Materials / Processes of production & treatment of materials
Materials / Plastics, polymers